
数据分析整理在微信运营中是怎么起作用的
在微信运营的过程当中,文章的UV直接影响到内容的扩散程度和受众。除了从内容层面专心做好文章之外,我们还能够从数据当中获取到哪些相关信息呢?以下结合最近工作当中的数据分析,做一些整理。
基础指标:
内部UV:公众号的粉丝查看文章的UV
外部UV:非粉丝,通过转发而看到文章所产生的UV
内部粉丝阅读率:内部UV/前一日的粉丝总量
在没有运营活动影响的前提下,我们所运营的微信公众号的文章阅览量呈现从周一到周日低开走高,到周日达到顶峰的效果。
对于这一情况,我们给出的可能性解释是:大家的忙碌程度通常随工作日递减,因而周末可能比周一有更多的粉丝阅读者。
结合这一经验数据,就可以调整我们发文的节奏:对于那些话题性较高、传播性较强的文章,最优选的方式是放在周四以后发布。在不明显改进文章质量的情况下,最大化文章的内部UV。
讨论文章阅览量的时候,有一个大前提,即:人们的注意力是有限的。那么,作为微信运营者在发布文章和活动的时候,就应该尽量避免同热点活动相冲突。
近期最典型的例子就是双十一:双十一期间,我们按照既有频率发布了系列文章,这些文章的UV无论在同比和环比都有明显的下降,降幅逾50%。
这不正是汪峰上头条的节奏么?尽管处心积虑准备,却依然被半路杀出的程咬金抢了风头。
在微信推广当中,我们采用了地推、新榜微博易投放、微信MP投放、微信公众账号内活动等方式来增加粉丝量。如何衡量各个渠道的有效值呢?
我们采用的指标有:次日留存;2-7日活跃;7日后留存、7日后活跃;单个增粉成本&单个用户的付费金额等指标。
·次日留存指标通常能够快速粗略的估计一个渠道的有效性。如果一个渠道的次日留存度较低,那么可以直接放弃。
·2-7日活跃是用户对于产品的一个体验周期,在这个体验周期内能否留住用户,就是对产品形态和产品价值的考量
·7日后留存和7日后活跃考察的是一个新用户转化为老用户的过程,在这一过程之后的流失与渠道无关,至于产品相关。在这里,主要需要监控是否有某个渠道的用户活跃度显著低于平均值,这通常代表了该渠道找来的用户并非目标用户,需要重新考虑投放。
·单个增粉成本 vs 单个用户的付费金额是衡量增粉这件事情是否划算的一个直接指标。也能够一定程度上帮助决策来分析某一个渠道上的用户是否更优质。
例:最近做了各渠道用户付费金额的统计表,来自集赞有礼渠道的用户因为其用户基数大,所以贡献的消费总金额较高,但是平均到单个用户上,即单个用户的付费金额就相当有限了。这也从侧面印证了:对于垂直性微信公众号,集赞有礼未见得是一个好方式的结论。
微信公众号的售卖和运营活动通常有一些固有的节奏,那么在运行一段时间之后,就往往容易观测出一些稳定的波动情况。找到造成那些波峰的售卖or运营活动,成为了最简洁可复制的模式。
例如,对于我们的受众来说,微课通常能够引起一批流量的高峰;而通过提前预热、课前报名,课后回顾的方式,能够将一节微课的效益放大到多天,形成更经济、良好的效果。
又比如,在售卖商品的过程上,是打包卖package的方式效果更好,还是以头条带爆款的方式更好,在不同的微信公众号上是有不同的体现的。不一而足,不再赘述。
数据异常可能是潜在的机会,也会是潜在的问题。通过及时关注数据异常,见微知著、一叶知秋。
周环比数据是我们最值得关注的点。每个月,以上月的平均数据作为基础考量KPI,对比各项指标的波动情况,其中:
·整体互动方面,用户在一日的使用上,有明显的分布。我们对于自身产品的认知,峰值应该出现在晚上;但实际的效果来看,用户在每天清晨也有一个产品使用的高峰。那么,一旦充分挖掘并推广这批用户的使用习惯,就给我们的产品带来了新的使用场景和机会。
·文章的平均阅读量依靠编辑的素养和判断力,但文章突发的高 或者 突发的低都值得分析和利用。对于突发的高,可以尝试复制此类题材,试验用户的偏好性;对于突发的低,则首先应该先查看下当日有无冲突的热点事件,其次再排查文档的调性问题。
·销售方面,订单量、订单金额分布是两个值得关注的指标。例如,最近我们公众号接连做了:一元夺宝 和 活跃老用户达成任务支付邮费体验产品两个活动。这两个活动单从订单量上来说是有正收益的,但是从订单金额来说,是整体拉低订单金额的。那么,对于销售方面的分析,就应该将这两场活动摘除出去,才能更好的评估销售效果。
TIPS:从目前的操作上来看,一元夺宝的效果确实超出我的想象,对于收集用户信息来说,是一个毋庸置疑的正收益效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27