京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据思维 更好服务民生
在互联网、云计算等信息技术结合而成的“大数据时代”,我国经济进入创新驱动发展的新常态。采集、整理和开发数据的创新能力,成为信息时代重要的生产要素。信息技术在推动经济社会发展的同时,也正深刻改变着人们的生产生活,影响着人们的思维行为习惯以及社会公共服务管理领域的各个方面。今年,国务院办公厅印发《2015年政府信息公开工作要点》,涉及高速收费,“上网慢、上网贵”,看病难、看病贵等诸多民生领域,既表明了政府对大数据应用的重视,又突出政府的民生服务理念。从全局和战略的高度加快大数据建设,运用大数据手段改革公共服务管理模式,打破部门数据的条块分割,促进数据信息平台的大融合,既是经济转型升级的迫切需要,也是优化公共服务、提高政府行政效能,进一步提升公共服务管理水平,创新社会治理体制、建设服务型政府的难得历史机遇。
第一,树立“大数据”意识,更新公共服务管理理念。当前,数据日益成为帮助人们认识世界、找出问题、想出办法的基本来源,不断积累的大数据包含着深度知识和价值。“大数据”所展现出的精确分析、相关作用、统合集成等鲜明特点,也给社会公共服务管理带来了一场新的革命。一方面,政府应积极适应大数据时代的发展要求,运用大数据集成思维,积极更新公共服务管理理念,推行信息化服务,不断提高公共服务管理水平。另一方面,各级民政部门要实现保障基本民生、提供社会服务、加强基层治理等具体职能,就应适应国内外信息化发展大趋势,积极探索信息化条件下服务群众的新方法、新途径,更新信息化发展理念,充分借鉴、运用“大数据”的新理念、新技术,采集、分析、运用各类社会数据信息,全面推进管理服务人性化。
第二,提高服务工作效能,推进民政专业化建设。民政工作直接关系着人民群众的切身利益和社会大局的稳定,当前,相当一部分基层政府的数据采集、计算、存储和查询调用,仍用传统、落后的方式进行,难以适应大数据的发展需求,亟待改进和加强。首先,要明确服务方向,强化服务措施。政府要从大数据的角度,深入开展综合化、信息化服务管理改革,将居民家庭经济状况、健康指数、养老服务需求等一系列民生社会问题,梳理成一项项综合数据,形成大综合、大服务、大管理格局,通过建立城乡社会公共服务信息平台,综合提升社会管理服务能力。其次,要逐步建设好信息化基础设施。各级政府应抓紧完善大数据急需的基础建设,比如计算机的更替、技术人员提升及大数据运行规则制定等方面的建设,实现政府服务信息化基础建设的一个大飞跃。此外,还要推进管理服务机制的制度化建设,大力推进民政工作专业化建设,提升社会服务的专业化水准。
第三,推行大数据信息公开,引导社会参与共建共享。《2015年政府信息公开工作要点》紧紧围绕党和政府中心工作以及公众关切,已对今年政府信息公开工作细致地作出部署。需要我们从国家层面统筹规划,尽快着手制定全国统一的政府开放数据标准,加大信息公开惠民政策的落实力度,注重多方参与合作,提升综合服务能力水平,充分发挥政府数据信息对人民群众生产、生活和经济社会活动的服务作用。
第四,促进大数据技术创新,积极发掘民生价值。大数据在带来巨大技术挑战的同时,也带来巨大的技术创新与商业机遇。一方面,要加大大数据产业的政策资金扶持力度。要增加政策信息透明度,促进大数据工程和学术紧密结合,加大技术资金扶持力度,建设公共服务平台,鼓励发展云计算与大数据通用基础软件、移动互联网应用软件等产品的企业,大力发展面向信息技术产业的公共服务。另一方面,要加快培养大数据技术人才,鼓励大数据产业人才创业。以大数据领域研发和产业化项目为载体,不断深化行政服务管理创新,加快培训创新型技术人才和应用型大数据技术人才,加快大数据分析能力和利用能力平台建设。
第五,加强监管与法治,保障大数据合理应用。大数据属于网络和信息范畴,在给互联网行业乃至国家甚至全世界带来变革性影响的同时,诸多社会问题也随之而来。在这一过程中,既要强化合理监管,还要循序渐进地加强大数据领域法制建设。只有加强监管与渐进式的大数据领域法制建设,才能保障大数据合理应用于改革公共服务管理,推进大数据服务民生的战略才有可能得以顺利实施。CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12