
大数据分析:选对池塘钓大鱼
世界第一行销之神杰亚伯拉罕的《选对池塘钓大鱼》一书中,把不同的客户群描述成鱼,而不同的客户群的集合就是不同的池塘,企业应该根据自己的目标客户,去思考怎样借助从别人已经建立起来的池塘中快速找到目标客户。
大数据分析挑战无限Gartner 调查显示:55%的组织正在实施大数据方案来提升客户体验,49%的组织使用大数据方案来改进流程效率;42%的企业正在寻找新产品、建立新的业务模型。然而,大数据分析却是企业现今面临的一大挑战,因为他们不仅需要管理不断增长的原生数据;而且,在物联网高度发展的今天,由于巨大数据量来源不同,有的来自传感器、机械设备,还有的来自社交媒体等等,多种多样的数据来源又给企业的大数据分析竖起一座屏障。
解决上述难题的条件,是企业必须要选择正确的大数据分析平台,即要选对池塘,只有这样才能钓出少量数据中的“大鱼”。
戴尔Cloudera数据分析应有尽有谈到大数据分析,毫无疑问,Hadoop是最受企业欢迎的数据分析平台。但Hadoop集群的安装、配置及运行,却有许多地方需要慎重考量。如软件方面,如何选择合适的Hadoop分布式与扩展软件和监测与管理软件?在硬件方面,如何分布Hadoop服务的物理节点?如何选择合适的服务器?在功能方面,Hadoop平台的性能与扩展性表现如何?等等。
针对Hadoop所存在的这一系列问题,戴尔联合Cloudera推出了Dell Cloudera大数据解决方案。
Dell Cloudera提供了包括硬件、软件、资源和服务在内所有Hadoop所需的东西。使用该解决方案,可帮助用户轻松解决与Hadoop部署、管理等相关的各种问题,快速从海量数据中的提取价值。
戴尔Cloudera软硬件兼施戴尔Cloudera是由Cloudera服务以及Cloudera管理套件组成的一个参考架构,可以让开源Hadoop在数据驱动的企业在生产环境中高效运行。
硬件结果处理更快速硬件方面,戴尔的PowerEdge C2100机架服务器和PowerConnect 6248以太网交换机都已经在大数据部署中成功应用,而戴尔Cloudera解决方案正是基于这个组件。Dell PowerEdge C2100服务器可让用户同时拥有内存和磁盘容量,它专门设计用于最大化数据中心中空间、电力和成本效益的。其中内存及存储的密度对数据中心至关重要,PowerEdge C2100可容纳18个DDR3内存插槽,最高支持144GB的内存容量,企业可以更快的速度获得数据分析结果。同时PowerEdge C2100机架服务器为MapReduce、Web analytics和数据库提供了内存以及磁盘。另外,Dell PowerConnect 6248提供了完整的48千兆以太网及3层交换机,支持更高效的机架密度以及核心交换的高级功能。
软件Hadoop管理更透明软件方面,在Hadoop集群内部以及Hadoop集群之间交付高能见度。戴尔Cloudera通过结合专家支持以及交付透明管理控制的软件,允许Hadoop维护人员以高效的方式进行集群资源的精确部署及管理。同时,戴尔Cloudera允许将与现代IT管理相似的业务指标以可支付的成本在生产环境中运行Hadoop集群,达到资源利用最优化。其内置的可预测功能能够预见Hadoop基础设施的改变,从而确保了操作的可靠性。
此外,戴尔还为Cloudera大数据解决方案提供服务及支持。保证企业的解决方案由专业的软硬件团队支持,根据企业特定的需求进行量身定做。
戴尔Cloudera内存式大数据解决方案的惊人表现戴尔中国和SAP中国为某石油客户在SAP HANA数据库+Compellent存储全闪存技术的BI分析系统的性能:
•星形模型设计,包含2个事实表数据,明细数据模型、指标汇总模型•6个维度表数据,编号维表、ID维表、组织维度表、人员姓名、三级单位名称、分公司名称•主表包含180亿条记录,数据分析量超过60TB容量!
原有系统,2小时以上计算出结果,且易发生中断……采用戴尔Compellent存储全闪存技术在SAP HANA的新商业智能架构,单个查询缩短到20秒以内,400并发查询运行缩短到10分钟以内。
戴尔自身就是这一内存式“大数据”方案的使用者,用于企业内部的“精准营销” 智慧决策和分析系统。在2015年,戴尔更获得了"SAP HANA Innovation Award-2015"第一名的殊荣。
结语“鱼是游动的,机会也是在变化的,我们必须不断变化位置来寻找大鱼,并且在其饥饿的时候投下鱼饵,将其钓上来。”——《选对池塘钓大鱼》
在这个数据颠覆一切的时代,企业的数据不断变化,企业也要以不断发展的眼光挑选出适合自己的数据分析平台。选对平台,才能钓出数据池塘之下的大鱼——大价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05