京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据助运营商实现转型 五大问题亟待改进
今天,传统电信运营商,无论是发达国家的还是新兴市场的都面临市场饱和、增长乏力的局面,需找到新的增长源。一些传统的电信运营商已使用大数据改善现有的市场表现力、建立新的收入流,例如:美国的Verizon使用匿名的用户数据,通过补贴方式,向第三方销售广告。它的竞争对手AT&T则建立了大数据动力塔断电工具,更好地实现基站的优化修理,让用户获得更好的体验。对于尚未使用大数据的传统电信运营商,需要确定其大数据发展的规划、IT解决方案,建立相关的支持组织,实现大数据的发展。
第一,使用大数据接入和分析丰富和个性化的数据通过大数据的使用,运营商可实时接入丰富的和个性化的用户数据,从这些数据中获得更多的价值,这是传统运营商独有的优势之一。实现成本优化和开拓新的收入源。运营商可利用这一优势地位,建立用户观察中心,提供各种基于大数据的产品和服务,从中获得不同程度的经验和增值。
第二,使用大数据实现结构性和非结构性数据的结合使用。对于传统的电信运营商,大数据商机无限,因为他们已掌握了大量的结构性数据,包括网络使用、地点、交易账单和个人信息。无结构的数据包括:呼叫中心的文件、社交媒体交换信息等。对于传统的运营商,要改善效率和经营效果,需要在一定时间内、系列的结构性数据与非结构性数据使用上找到平衡点。通过价格优化,实现收入增长、改善目标和扩展用户生命期、降低经营成本、实现支出的智能化。使用大数据,可实现对现有收入流的优化。
第三,以智能方法替代传统的分析方法在大数据时代,需要使用智能方法对数据进行分析,包括数据的抽取、转换、装载,以代替传统的数据分析方法。电信运营商无需新的数据源,只需建立大容量存储容量或确保快速的数据处理速度。例如:欧洲的传统运营商运用智能分析法改善发展中市场消费者的智能手机普及率。通过统计分析不同通话周期的通话模式,确定对手机普及率的影响者,确定目标影响者,为其提供相应的服务。
当然,为了促进大数据的发展,传统电信运营商需建立一个相应的团队来实施大数据计划,确定数据的收集、组织、管理和使用。可以采取与其它单位合作的方式,也可采用合资的方式建立相应的团队。目前,全球一些运营商已成功与其它部门共同建立了大数据团队,实现团队与商业市场间的紧密连接,以分析和解决相关的商业问题。
一是,分析人才的缺乏。在竞争激烈的情况下,分析人才缺乏成为吸引资源的主要风险。根据Gartner的研究,2015年,三个与大数据相关的工作中就有一个空缺,主要是因为相关技能不足。
二是,数据的质量或可用性。对于企业,经常面临的问题是没有建立适当的数据治理体制。数据质量或可用性是导致数据不准确的关键,会导致分析和结论出现问题,这一问题对新兴市场的挑战更大。对于许多运营商来说,准确的数据来源和组织是至关重要的。
三是,无效的大数据团队。许多传统的电信运营商将大数据放在IT或商业智能化部门,由于远离商业部门,在制定和选择解决方案时,往往很少考虑商业的需要,这将大大影响数据团队的运作效果。
四是,很难获得安全方面所需的资金。许多传统的电信运营商为了提高边际收益,往往会压缩资本支出,为此也不愿意加大投入,更别提加大安全方面的投入了。但这一投资对于企业的发展又是至关重要的。
五是,法律和管制面临的挑战。对于传统的运营商,应意识到并遵循用户数据的相关限制。要让用户相信,他们的数据被使用让他们获得了最佳利益。
首先,减少用户流失率。印尼的电信运营商Telkomsel采用大数据进行分析,减少用户流失率、降低用户收入的成本、扩大用户在网时间。T-Mobile使用数据分析平台,减少用户流失率。
其次,提供定制化服务。运营商Airtel与Mobileum联手,对非洲用户数据进行分析,更好的了解和测算用户国际旅行的需求。可帮助Airtel为漫游用户提供定制化服务。Vodafone与TomTom在个人导航装置方面合作,为TomTom在全球34个国家提供装置所需SIM,SIM可实现M2M通信。德国电信与Kiunsys公司合作,为意大利Pisa提供智慧城市解决方案,主要是利用大数据优化服务。
再次,大数据品牌解决方案法国电信Orange创立了一个大数据产品Flux Vision,作为其商业服务的一部分。法国旅游机构可使用这一工具了解用户行为等。德国电信通过其分支机构提供一些大数据解决方案,包括实时安全分析、移动性连接、面向私人和公共组织的云解决方案。
然后,为第三方提供大数据解决方案。前新西兰电信公司为外部机构提供大数据解决方案,主要是为私人企业和公共机构提供数据观察、服务及云解决方案。新加坡电信成立了DataSpark公司,为第三方提供大数据解决方案,提供的服务包括:GeoAnalytics,确定不同目标群运动幅度、模式和步幅。
最后,扩大新的业务收入流。Telefónica提供了一种智能步伐产品,用于分析人群的行为,帮助企业和公共机构改善对消费者的了解,更好地做出决策。Telefónica利用大数据扩展新的收入源。它联合一家银行推出了Yaap购物业务,以提供数字化服务简化人们的日常生活为目标。希望成为面向西班牙人的最大网络,同时,积累消费者购物行为的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27