
智慧数据避免企业成为大数据落伍者
不可回避,我们生活在一个大数据的时代。不仅美国等超级大国将大数据定位为国家战略,将大数据成为“未来新石油”,商业企业亦能从大数据中寻找金矿,成为制胜未来的法宝。
在数据分析时代,数据已经给企业创造了价值。如很多年前,银行就可以通过数据分析,实现针对信用卡用户的精准营销,同样,在政府公共事业管理当中,数据能够帮助政府实现公共资源配置的优化,服务广大市民。
随着互联网和互联网的推动,我们从传统的数据时代跃入了大数据时代的。大数据具有4V特点——数据体量巨大(Volume)、数据类型繁多(Variety)、价值密度低(Value)、处理速度快(Velocity) ,大数据的积累和沉淀,以及大数据分析技术的演进将进一步给企业创造商业价值,也为个人生活带去便利。但是如何收集、分析、使用和挖掘大数据价值也是商业企业面临的难题。
“分析工具和具有分析技能的人,将成为推动世界经济向前发展的主要动力。” Ptak,Neol and Associates公司的分析师Mike Karp说,关于大数据的最重要的特点是“大”、“多样化”,传统的数据处理工具或存储管理技术不能充分处理它。因此,在竞争激烈的行业划分中,是否能结合业务发展将这些数据转为可利用的知识和智慧,已成为行业领导者和落伍者之间的关键区分。
随着近年来行业信息化的深入发展和互联网的多维应用,政府、企业、机构等积累了海量的“大”数据,这些海量数据广泛分布于产品开发、市场营销、客服服务、供应链等各个环节,并以文件、音频、视频等多种形态结构化和非结构化存在。不少机构持续加大在大数据上的投资,引入商业智能、数据仓库、数据治理、Hadoop、模式识别、人工智能、数据挖掘等大数据技术和方法,以满足创新性分析的需求。
籍此,文思海辉提出了“Smart Data”智慧数据发展战略,所谓“Smart Data”,即是基于大数据基础上的商业智能和大数据分析理念、工具和方法论。从而帮助企业挖掘和提升数据应用价值,引领客户“全面地发掘大数据价值”。
在文思海辉商业智能事业部副总裁、大数据专家贾丕星看来,大数据已经成为很多商业企业的核心战略,大数据应用涉及整个企业的核心决策流程,为企业适应市场、改变商业模式而加速。在文思海辉的战略规划中,将以大数据为基础,通过自身咨询、解决方案和外包开发服务,帮助企业和政府打造智慧商务、智慧金融、智慧城市和智慧制造等有价值的应用体系。
他分析,从整个数据价值链来看,数据收集和存储之后,进行处理变成有价值的信息,之后要从信息变成知识,即针对商业企业所要解决的问题出发,通过数据分析和预测,发现原因,寻找解决方法,这是新一代大数据分析的关键部分。而更为重要的是,在分析之后,要把它嵌入到企业的业务流程当中,能够对这些问题采取行动,使得整个数据的应用和价值链形成闭环回路。如果没有高性能的分析工具以及适合大数据的分析方法,大数据的价值将无法得到释放,大数据的堆积后的海量数据将逐步变成无用的垃圾,同时占用大量的存储。
美国IT咨询公司Avanade商业情报部副总裁斯蒂夫·帕尔默说,大数据是指非常“膨胀”的数据集,大数据给人类带来的真正机遇是把许多信息碎片拼起来,为我们的决策服务。
贾丕星指出,在全球深度联合和融合的大数据时代,大数据已经成为商业竞争的重要基本要素,不仅体现在支撑业务运营和决策上,也将成为企业和机构提升竞争力和创新能力的强力引擎。各行业都需要从无处不在的数据中挖掘价值,这是每个大型企业管理者都需要深入思考的问题。中国大数据市场将进入高速发展时期,大量具有远见的企业正在启动大数据战略和项目,而这也带来对Smart Data需求的飙升。在大数据时代,中国拥有庞大的信息资源和用户市场需求,企业将拥有更多通过大数据支持的创新服务脱颖而出的机会,如果不能从大数据和智慧数据的世界中获益,就可能会输掉未来的竞争。
总之,利用智慧数据对商业数据的深刻动车,才能让你把握未来,成为大数据时代的领导者,而避免成为落伍者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13