
企业如何推进数据驱动文化?数据分析工具并非关键
易于使用的数据分析工具将会在企业内部大量使用,对此,分析软件厂商们非常看好。仅仅在过去数月里,我就收到大量新闻稿,都说产品可以“将分析大众化”,主张让数据分析工具变得更加简单,从而解决企业分析工具使用率低的问题。
但是,对于我来说,企业如何推进数据驱动文化,数据分析工具并非关键,真正的症结在于企业的内部文化。
人们更喜欢也更有可能使用简单的工具,厂商的这种观点并不新鲜——而且这是显而易见的。现在推出的工具绝对比十年或是十五年前的那些古董要更加易用。但,工具变得更加简单,使用率却并没有明显提升。
我经常从分析专家们那里听到一句话:在一家企业的所有劳动力中,数据驱动工具使用率的通常顶多也就20%左右。无论是IT部门使用,还是分析团队将工具交付给员工使用,情况基本类似。
数据分析工具也有拦路虎 你能否突破20%使用率的天花板?
有确凿的证据可以证实这一数字,在某些情况下,20%实际上还有些高估。在最近来自Dresner咨询服务公司的一份报告《Wisdom of Crowds BI Market Study》(大众智慧BI市场研究)中,近40%的受访公司说他们公司中不到10%的员工使用数据分析工具,超过20%的受访者表示这一数字在11%到20%之间,仅有不到25%的受访者表示这一数字曾超过40%。
特别值得注意的是,这些数字是低于前些年的。这就意味着即使随着工具不可否认地变得更加易用,它们在一线员工中也不没有更高的使用率。
一线员工为何拒绝使用新型分析工具?原因可能有很多。首先,人们不愿意改变他们做事的方式。同时,在没有看到适当理由的情况下,人们是不会接受新方法的。例如,你如果把一个炫酷、全新、自助的数据分析工具摆在一名营销经理面前,估计她不会去使用。因为是否要使用这个分析工具,取决于分析团队能不能解释清楚,这个分析工具将会如何帮助她更有效地区分客户,或是通过测试比较,证明这个分析工具是最行之有效的。
企业如何塑造数据驱动文化?管理层至关重要
这不仅仅是企业培训教育的问题,它还取决于管理人员需要灌输这样的数据驱动文化,显然,这和数据分析工具没有太多关系。员工们需要知道,数据使用的好坏程度将直接影响自身在企业内部的权重,这样他们就会越来越重视数据驱动化。
我接触过一些数据驱动文化较成功的企业,听到过这样的事情:开会时,如果发言没有数据支持,这样的人没有太多的话语权。管理层会监督谁使用了数据分析工具,并把这作为工作业绩考核的一项指标。管理人员身体力行,让数据说话,而非跟着感觉走。这一过程是需要管理层加以引导的。
可能有些企业领导认为,通过轻松安装一款易用的数据分析工具,企业员工就会突然都变为数据驱动。这样的想法是不切实际的。无论工具多么简单友好,它们本身并无法将那些在日常工作中不使用数据的员工进行重塑改造。对于那些寻求突破20%上限的企业来说,了解为什么数据驱动文化无法推行,如何才能够有效让数据驱动文化落地,这才是重中之重。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10