京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网最尖端的竞争集中在大数据
2015中关村大数据日的峰会上,中国科学院院士张平文举了一个有趣例子:前一阵,他有家人甲状腺不适,院士有天晚上查了甲状腺知识,第二天就收到微信好友申请,有专治甲状腺的医生想加他为好友,院士感概说,“没有人怀疑我们就生活在大数据时代,”
2015年以来,从“大众创业、万众创新”,一直到“互联网+”以及大数据发展行动纲要,国家利好政策不断,行业领军者开拓创新,中国大数据产业群正快速形成,大数据在交通、工业、社交等领域的应用也日新月异。大数据,正在开启一个认知的新时代,这是一座新的商业宝藏,也正酝酿着一场全新的较量。
“最尖端的竞争”
过去3年,打车应用真正改变了大众出行,滴滴快的CEO程维在大数据日峰会分享说,“中国80%的出租车司机通过滴滴连接在一起,又顺势推出了滴滴专车、快车、顺风车、巴士等系列新业务,希望将有相同出行需求的人连接在一起,实现任何人在任何时间、任何地点在3分钟内叫到一辆车。”
美好的愿景完全依赖于大数据的支持。直到现在,程维依然清晰地记得一宗“事故”:2013年有一次北京大雨,CBD国贸地区用户打不到车,滴滴技术团队梳理订单后发现,绝大多数的订单根本发不出去,“我们最初德尔大数据算法是将一个订单发给附近1-3公里的司机,在订单非常多的时候,司机信道变成稀缺资源,就无法接到更多的订单。”
程维很快发现,当一个城市日均订单超过1万单后,原始的大数据算法即成为瓶颈,于是,滴滴将建设中国最好的大数据团队当成公司战略,为实现用户和司机的快速匹配,迄今后台已经多个版本的大数据结构和算法。
大数据在交通的应用,并不限于打车。构建了完整大数据产业平台的北京久其软件公司,曾为江苏省提供智能化交通统计监测系统,将所有江苏省内高速出入口的视频以及海运、河运、港口等所有的音视频的数据全部纳入体系,进行实时监控。久其软件副总裁钱晖分享说,“在江苏省内,如果你的车被偷或者号牌模糊,系统在一秒钟之内就能实现号牌识别。”
钱晖表示,智慧交通系统积累的数据,服务范围不限于交通,比如经济学有所谓“克强指数”(即以工业用电量新增、铁路货运量新增和银行中长期贷款新增的数据,评判GDP的增长),利用智能系统可以监测高速公路出入口大货车的运量,分析实体经济状况,用于经济决策。
提供便利的同时,大数据交通云的难度和复杂度,也远超过一般人的想象。以江苏省的智能交通系统为例,实现数据实时入库、动态更新以及查询,数据量非常大,每年要更新12亿条以上的信息量。
程维认为,交通大数据能力的构建,其复杂程度甚至超过搜索,他将其总结为三大特点:实时性,每过1分钟交通情况以及车的位置都会发生变化;双向互动,需求方用户和供给方司机相互影响,除了满足用户,系统要根据司机喜好推荐最好的订单;集群扰动,比如,100个人或10000人搜索,结果不会有什么区别,但是10个人还是200人一起叫车,运算结果完全不同,“滴滴代表的交通云,涉及深度学习、人工智能等技术前沿,令云平台更智能、更高效,这是公司最重要的事情。”
“互联网的竞争,已从早期的产品竞争、营销竞争、资本竞争,实实在在进入云端、大数据端的竞争,”程维表示,“全球大的互联网出行领域,最尖端的竞争就集中在大数据领域。”
占据技术制高点的背后,是顶尖人才的争夺。滴滴的全球竞争对手,几乎早于他们动手前的半年,就开始收罗全球顶尖大学的大数据研究人员,从主任、专家到一线工作人员,几乎一网打尽,甚至有公司专门派一支队伍在MIT实验室旁蹲守两个月,“先从副主任挖起,再找主任,一个带一个把30多个实验室的人彻底挖空。”
关键在顶层设计
6年前即深耕工业大数据,美林数据总裁王璐深有感触,“大数据对整个工业带来的冲击是太大太大了”,而美林只专注两件事:工业大数据中心的建设以及对数据的分析、挖掘、高维可视化。“‘两化融合’核心是什么?我们认为是数据的管理,只有在工业4.0时代,才实现了‘两化’的强连接,代表工业化和信息化高度嵌入到一个整体系统。”
在王璐看来,大数据时代,就是会用数据说话、决策、管理、创新,如今,整体氛围和思维方式的条件已具备,核心在于大数据技术的挑战,其中,首要的挑战在于组织的顶层设计,“美林帮助很多企业进行顶层设计,两化融合和大数据融合的战略需要复杂组织系统的设计,尤其是数据管理的长效机制,其中,流程和组织最直接的挑战,就是寻找一批懂业务、懂数据还懂分析的人才队伍。”
国家电网信通部主任王继业在峰会分享了其基于顶层设计、布实施后的运营实践。在大数据方面,国家电网首先规划建立了企业级大数据平台,通过大数据平台实现数据的采集、传输以及存储和处理;在大数据平台之上建立决策支持类、实施采集类、在线监测类、计算分析类等大数据业务应用,其中分成10大场景,在不同单位进行相应试点工作。
以电力负荷预测为例,国家电网组织了江苏电力、山东电力两家地区公司,利用大数据技术,基于电力负荷用户档案数据,结合气侯、气温变化等数据,建立用电数据分析模型,实现用电负荷特性分析并且预测未来用点负荷曲线。
比如,江苏电力就构建了数百个分析模型,在2015年4月对于全省的电力用电高峰进行了预测,其判断用电高峰出现在8月6号,预测最高电量为8481万千瓦时,结果,真正出现时间是8月5号,仅仅差一天,而实际发生的最高值为8440万千瓦时,误差率非常之低。
王继业表示,基于顶层设计、有序推进,大数据带来的威力十分之大,国家电网也尝到了甜头,“通过前期试点,负荷预测准确率提高到99.5%,最高负荷发生时间偏差1天,峰谷差率下降了5%;对配电网抢修精益化大数据预测,实时监测、故障预测、抢修达标率析,设备故障预测准确率提升40%,抢修达标率达到15%,抢修时长缩短30分钟。”
事实上,不只工业领域,响应整个社会大数据化,凝聚共识,全力推动大数据产业创新发展,形成政府、社会、市场共同推动、联合治理的发展格局,一样需要顶层设计;而商业公司内部的许多数据,若能在一套规则清晰的制度下进行共享,完全可以应用到宏观经济和社会管理,实现数据价值的最大化。
龙信数据董事长李钰就认为,应用是衡量数据价值唯一标准,龙信即将发布的是中关村企业大数据平台,可记录北京市百万家企业每天的动态的经营和税收情况,可以洞悉全国5千万市场主体与宏观经济内在关系,有百亿的节点在秒级可以进行运算,有深度学习能力,是未来企业数据的智慧大脑,这对于宏观经济决策一样极具价值。
LinkedIn全球副总裁Michael Korcuska在峰会分享了过去3年的领英(LinkedIn)数据积累,也有非常有趣的洞察:基于中国强劲的经济增长,越来越多的人才从全球来到中国,其核心技能主要是经济学、统计分析、化学、社交媒体等领域,而部分离开中国的人士,其所擅长的是城市规划、海洋、导航、水库管理以及传统中医等。Michael Korcuska建议,利用领英的职位数据库,政府可以做两件事:为稀缺人才提供激励机制,与大学合作培养针对性的人才。
峰会最后,宽带资本董事长田溯宁以独有的历史视角,对于大数据应用的前景进行了展望。他认为,人类历史上曾有地理大发现的时代,发现新大陆改变了人类的时空观念,开启了工业革命,而现在,人类社会正迈入“一个数据大发现的时代”,将开启无限的新机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06