京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。
那么什么样的人可以胜任数据分析师这一职位呢?
自我介绍彰显表达能力
一般来说,数据分析师面试一开始都会会让候选人先自我介绍。很多分析师可能会想,又要让我介绍自己啊,可能会有点不耐烦,但其实这是面试的第一关,如果一个数据分析师连最熟悉的“自己”都不知道怎么表达,那他怎么向别人展示数据分析的结果或想法呢?在深不可测的商业场景中,做数据分析并服务业务部门毫不容易,若一个分析师无法在短短5分钟内让我知道他的背景、他有什么优势能让他得到这份工作,这第一关就过不了。
“赢”应该是一种习惯
“你过去做过什么数据分析或数据挖掘的项目,这个项目让你感觉最兴奋的是什么?”这个问题经常被问到。
因为“赢”是一种习惯,若求职者曾做过很好的东西,那么将来会追求做得更好。 但如果求职者做过最好的东西在别人看来都只是一般的话,那该应聘者就不是个很优秀的人。
在面试中,很多人之所以认为自己的项目做得好,只因他们从没用过数据,只不过抓到一些别人未做过的空白点,因而觉得自己做得很棒。
盲目给出答案不靠谱
小陈目前是一位成功的数据分析师,他介绍说,曾经有次面试新人,问到“若你是行政总裁的分析师,今天是周一的上午,你要给老板看哪三个指标,让他知道公司上个星期的运营是可靠的?”这个问题时,许多求职者连一个问题都没问就开始给答案了。这些答案五花八门,并且很容易推翻。
“一般来讲,这种人会让我很失望,因为连问题都没问好, 怎么给答案呢?为什么不问一下,上个星期发生了什么事,老板最关心的是什么呢?如果连这些讯息都不知道的话,盲目给出的答案当然不可能是对的。”
估算题考逻辑推理
中国的人口有多少?5年后中国的人口是多少?被问到类似问题的时候,一般求职者会觉得冤枉,中国人口那么多,我怎么会清楚。
的确,但作为数据分析师,应该有一定的逻辑推演能力。在完全没有经验和足够数据的情况下,数据分析师应当能考虑到人口增长的因素,如中国人口的增长情况、死亡率等等。
综上所述,数据分析的人才不仅要懂得深度的倾听和表达,而且要对数据与商业间的感觉有足够的敏感度,懂得问问题,并能够在没有足够数据的情况下运用逻辑推演来分析现实问题。
以上是大方向的泛泛而谈,那么数据分析师具体的技能要求又有哪些呢?
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
做到以上几点,就可以胜任数据分析师一职了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08