
大数据为管理工作提供支持
我国教育改革和发展正面临着前所未有的机遇和挑战。以教育信息化带动教育现代化,破解制约我国教育发展的难题,促进教育的创新与变革,是加快从教育大国向教育强国迈进的重大战略。大数据是指利用常用软件工具捕获、管理和处理数据所耗时间超过可容忍时间的数据集。也就是说大数据是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。大数据作为重要的参照物正在改变政府、企业的决策和营销模式,高校的学生管理工作必须面对这一变化的挑战,前瞻性的转变工作思路,运用一切技术手段和工作方法,充分挖掘大数据的价值,为学生管理提供各种支持。
大数据能使学校管理决策更理性,能更准确地掌握学生学习、生活动态,制定和实施的政策更加科学;大数据也可以提高各学生管理部门的工作质量和效率,推动工作创新,给整个学生工作管理体系以强有力的支撑。大数据时代的到来必将推动现有高校的学生管理工作重构,有利于加强学生管理工作的针对性、动态性、创新性和前瞻性。
学生管理的针对性变革体现在高校的学生管理工作要贴近学生生活、与时俱进。科学发展观的核心是“以人为本”,以人为本体现在学生管理中意味着要始终把学生放在核心的位置,以学生为本,一切管理行为围绕着学生展开,理解学生,关心学生。高校的管理要进一步贴进学生的生活,具备更强的服务意识就要挖掘大数据表达给高校管理层的信息。每天每个学生在使用互联网的过程中产生着各种各样的数据,当数据量达到一定级别后,就可以进行汇总分析、挖掘探索。例如:通过食堂窗口饭卡使用频次,使用金额的数据分析,我们可以了解学校贫困学生的分布情况而调整各类助学金的评选和分配。这种具有针对性的数据分析必将对高校的学生管理产生深刻的影响,带来强有力的冲击。
学生管理的动态性变革体现在高校的学生管理工作要跟上学生的动态,先行一步。大学生富有活力,世界观、人生观、价值观都处于形成期,思想和行为呈现出变化比较快的特点。那么高校的学生管理模式如果还遵循教条式、封闭式、单向强制的模式,必将走向瓶颈;现在的学生管理要关注大学生的生活变化,主动发挥大数据的舆情作用,分析大数据所反映出的真正诉求,以实现学生管理的动态化。例如:通过对学生微信朋友圈的分析、学校bbs和贴吧在选课这一时间段数据分析,学生主要的提问是围绕公共选修课的教师、课程等,那么学生教务管理系统可以将公选课的教师介绍、课程介绍整理汇编,为学生选课提供佐证。通过对大数据的分析,可以实现先行一步的动态管理。
学生管理的创新性变革体现在高校的学生管理工作要满足学生的需求,推陈出新。高校学生管理创新的重点是根据时代的要求对管理内容、管理方法等进行分析和研究,并在此基础上进行必要的调整与改进。那么调整和改进的依据是什么,这就是大数据的分析。大数据其实离我们并不遥远,除了上网搜索的数据,随处可见的摄像头、日渐流行手机上网都在产生着海量的数据。如果能够利用好这些数据,在调整、制定学生管理规定时,参考大数据带给我们的信息,以学生的需求为第一要务,必将给高校的学生管理工作带来不一样的气息。
学生管理的前瞻性变革体现在高校的学生管理工作积极面对学生突发事件,精准预测。一直以来,高校的安全稳定工作是重中之重,对于学生管理的突发事件应急处理要求管理者要居安思危、未雨绸缪。通过对学生在使用互联网过程中留下的足迹、关注的热点进行收集、整理、准确的分析和整合,可以提出精准预测,这是高校学生管理工作的一个新起点。如果在突发事件之前能够精准预测并逐步取代事后的统计描述,在问题发生之前提供前瞻性的指导,从而有效规避风险,无疑能够大幅提高学生管理工作效率和服务质量。
在大数据时代,学生管理的数据整合及利用还应克服传统教育管理的弊端,在认真做好海量的有关学生教育数据的搜集、整理、分析的基础上,将分析的结果,结合教育条件、学生特点等的变化,建立反应迅速、便捷高效的教育管理模式。首先,可以运用大数据技术,建立学生管理的预警机制和有针对性地干预、调控突发事件。通过对学生在校期间的一卡通使用记录、图书馆借阅数据、寝室住宿记录以及对学生在微信、qq空间、浏览过的网页地址、搜索引擎关键词等方面获得数据进行分析,可以及时监控学生思想和行为动态,从而有针对性地对学生进行教育管理和问题疏导。其次,通过海量采集学生数据,分析挖掘学生的思想、行为变化,并根据学生的专业、年龄、性格等特点进行分类指导,为千差万别的学生提供学习参考、情感指导、就业咨询。这种个性化的教育管理能够促进大学生在学习和实践中逐步修正错误、规避风险,从而督促高校的学生管理者转变观念,重服务轻管理,构建有利于青年成长的个性化的大学。
大数据时代的来临对高校的学生管理工作既是机遇也是挑战,高校的学生管理工作者一定要科学利用数据分析技术、积极应对新时期学生管理工作面临的种种变化,深入探寻学生管理工作中的规律和共性,创新性地解决各种问题,为不断提升高校学生管理工作水平提供强有力的支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08