
炒股App:大数据丢在风口上的蛋
尽管炒股App处于刚刚勃兴阶段,但业内几乎在短时间内迅速就其产品模式达成了共识——将交易与交流相结合,组建日常化的投资社区。在此之下,不同背景与定位的炒股App开始探索各自的商业模式,谋求符合自己的生存之道 ...
据媒体报道,与2007年“大牛市”不同,2014年以来的大牛市伴随移动互联网的蓬勃发展,特别是微信、移动新闻客户端等加快了信息传播速度。2007年时,股票投资者还需要在同花顺、大智慧等PC客户端浏览行情;而今,几十个乃至近百个新式炒股App蓬勃而生,为无数赶赴牛市的“85后”新生代投资者提供参考。
一场以炒股App寻找全新App增长点的创投热情,更在四五月间股市的“牛气冲天”中,被极度释放,进而又在6月末的一连串股市大跌之中,被非议无数。作为已经不再热门的App创业中的一支奇葩,在股市的风口上,炒股App到底能够走多远?
社交应用的股票定制版?
在有关提到此次炒股App热的媒体报道中,常有一段话,专门用来解析过去主要应用于PC的炒股软件和当下应用于手机的炒股App的区别:“尽管炒股App处于刚刚勃兴阶段,但业内几乎在短时间内迅速就其产品模式达成了共识——将交易与交流相结合,组建日常化的投资社区。在此之下,不同背景与定位的炒股App开始探索各自的商业模式,谋求符合自己的生存之道。”
如果翻译成更为浅显的话语,可以理解为这些炒股App的基础架构颇类似微信、微博之类的社交应用,一些炒股达人则成为这一社交应用之中的微信公众号或者微博大V。当然,草根股民也可以用朋友圈,发表一下自己对股市的看法。
这样的平台架构,其实在技术上已经没有多少难度可言,因此,其快速爆发的效率可以用“扎堆”来形容。据6月22日中国之声《新闻晚高峰》报道:“任意一个App Store,与‘炒股’相关的新式App有几十至近百个之多,包括公牛炒股、优顾炒股、短线放大器、投资堂等。”而火爆程度呢?“百度指数也显示,近一个月内关键词‘炒股软件’的搜索指数整体同比上升了834%,移动端同比上升超1000%。”
如此红火的炒股App势头,它真正和过去大智慧、同花顺这样的PC客户端相比,当然并不仅仅是炒股社交化如此简单。以2011年就上线的炒股App股票雷达为例,其创始人冯月就坦言:在做法上,股票雷达要求投资者都必须公布自己的投资记录,形成交易数据公开;通过一定时间内的收益排名数据比较自动推出“股票高手”,允许用户跟着高手投资。一旦关注某个高手后,平台会自动向投资者发送该高手仓位实时变化消息。凭借“有迹可循”和“跟单交易”的新颖模式,股票雷达很快就吸引了首批用户,截至目前,股票雷达实盘日交易额已经有几亿元,股票雷达团队也已突破100人。
这被冯月称之为是一种大数据的呈现,而真正对于股民来说,这其实就是一个实时的操作指南。这是以往大智慧、同花顺等老牌股票应用,主要提供一些股票推荐和相关资讯所不能及的。
据《深市新开户个人投资者学历分析报告》显示,在2014年初到2015年3月31日之间的新开户投资者中,30岁以下人群占比达到37.7%。这一批在互联网土壤上生长起来的“85后”股市小白用户,跟着带头大哥混的思维逻辑就是他们炒股的刚性需求。
一个前度玩家的新游戏
对于炒股App和过去的炒股软件的区别,笔者有一个更为形象的比方,后者其实就是一款单机游戏,而大智慧们提供的各种资讯,则是股票这款游戏的玩家们,在一个封闭的小房子里,独自专研着属于自己的游戏攻略。你其实是一个人在战斗。个人在股市里摸爬滚打的长期经验和对信息的分析研判能力,将为一次又一次通关,增加一些成功的砝码。
而前者,则是一款网络游戏,面对全新的关卡,一个新手往往顿时迷失了方向,如果沿用过去的方法,去研究游戏攻略,学费高、课程长、见效慢。但在社交平台上,可以有另一个选择,跟着有经验的老前辈、股票高手们一起,去开荒捞点战利品。当然,这依然不能保证通关,但至少这是摆在还不太懂股市的“票友”们最简单粗暴的炒股赚钱方式。
其实,这两种模式之间,是有过渡阶段的,即在2007年上一轮牛市期间,在博客平台上一度跃红的那些荐股牛人,包括曾被誉为中国第一博后又因为诈骗罪而入狱的“带头大哥777”。所不同的是,这个中间阶段的过渡平台,依然延续着那些专家荐股、炒股达人的神话,加上信息的不透明性和仅仅为推荐而非真正实时操盘,而备受诟病。
这就涉及一个所谓盈利模式的话题。即前代产品如大智慧、同花顺的盈利模式,其实最主要的还是作为一个平台,协助股民浏览行情、获取资讯、完成交易,并收取金融信息服务费用和少量的广告费用。这种其实还停留在过去“卖产品”的服务模式和股票门户平台的定位,在越来越海量的信息数据爆炸下,也越来越不合时宜,也更加地向摸爬滚打股海多年的重度股民方向发展,也使得其业绩一直表现乏力。5月的媒体报道中,一位分析师则对腾讯财经表示,大智慧一向擅长给资本市场讲故事,但其主业一直陷于巨额亏损,商业模式不可持续。
反之走“跟高手炒股”概念的股票雷达、雪球等炒股App,则以反专业化的面目出现,即用“高手”这一概念,以及自己平台对大量碎片化信息数据的分析并简化成买进卖出的量化结果,让小白用户可以快速赚钱,并迅速地为自己的平台聚集起人气。“人气就是入口”,对于移动互联网的App们来说,有了人气,并用真正能赚到钱来黏住用户,盈利模式总会有的。到6月,据称股票雷达和雪球上的日均活跃用户数接近100万,对于一款“网络游戏”来说,社区的内容贡献问题、高手数量、跟随的小弟资源,均已盘活了。
只是,在大牛市下,怎么炒都容易赚钱,矛盾不易爆发。但万一熊了呢?
大数据!一个有关预测的局
万一熊了,能不能真正让小白用户“跟高手炒股”赚到钱,就成为决定App黏合度的最终关键,为此,有志于炒股App的各路英雄,包括BAT们,都祭出了同一张牌——大数据。
腾讯早在2012年就推出了“自选股”App,在其社交领域基础上打造“股票圈”;百度今年2月上线了选股App百度股市通,主推智能选股。阿里则在5月牵手第一财经,将第一财经专业的财经资讯、投研报告内容,通过支付宝“股市行情”端口直接抵达3亿支付宝用户。
在某种意义上,腾讯的“自选股”颇为类似上述草根创业的炒股App,阿里则以更为专业和标准化生产采集的第一手资讯和服务压过传统炒股软件大智慧们一头。两大巨头的切入角度,均是以自己最优势而竞争对手难以山寨的平台力量,可谓刁钻,但尚不具备颠覆力量;而最具典范意义的则是百度的股市通,其号称基于百度每天数亿量级的政经类搜索数据和数百万新闻资讯信息,通过专业的数据挖掘和分析技术,将新闻信息、搜索数据与股票建立起相应的关系,以信息的热度变化来实时分析股票市场的变动。
简言之,就是通过信息流的快速变化得出一个涨跌的大数据结论,这个大数据优势,只有百度具备,其原理颇为类似早前百度推出依托区域面积内使用百度地图的人数而形成的景区热力图,来帮助出行人士选择到底是看人海还是看风景。这一基于大数据和人工智能技术的“智能选股”服务,据其统计数据显示,上线3个月以来,百度股市通应用大数据推出的热点有685个。如果以每个热点的关联股票作为一个组合,平均仓位以当日开盘价买入,第二天开盘价卖出计算,有78%的热点题材股票是上涨的,且日均涨幅达到1.7%。如果按照A股1年240个交易日计算,年复利收益在理论上达到56倍。
但这依然只是一个理论化的模型,其特点也仅仅是用数据的力量来分析海量信息流,跳过股民不关心的分析过程而直接导出一个预测结果,与“跟高手炒股”的区别,也主要在于一个是以算法来预测,一个则更多依靠经验来预测。
且“跟高手炒股”目前也在探索一种经验型大数据的解决方案,如股票雷达等,也在考虑除了供应大量信息和订阅高手动态的方式之外,对信息数据以及高手们的实时动态,而形成一系列预测结果,甚至介入中信证券、广发证券、国金证券、方正证券、国联证券等老牌券商,以形成更具指导力的结果,供小白用户直接选择。
怎么样的大数据分析方案,其实都只是各个入局炒股App根据自身优势与特点,对“真正能为小白客户实现简化投资”这一结果而找寻的出路,但真正能否预测到结果呢?正如抽样调查只能为选举结果提供参考系一样,仅仅来自于某些领域的大数据,其实也只是一个较大的参考系,而非全量的数据分析,其参考价值更大,但也仅仅只是参考,是更无限接近真相的一个预测。
股市有风险,投资需谨慎。这句话同样适用于炒股App们,能否在牛市和熊市的不同阶段保持对用户的黏合性,能否总是保持正确,很重要。而这其中,除了科学的大数据参考外,还有那么一丝赌博的味道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01