
互联网的大数据时代真来了?还是一直都在?
这几天在微信上看到很多关于互联网大数据的文章,也有人说大数据已经作为云计算、物联网之后IT行业又一大颠覆性的技术革命,Heven在想,互联网的大数据时代真来了?还是一直都在?其实,数据分析技术的运用已经悄然开始了,比如淘宝网、京东等购物网站监视着我们的购物习惯,百度、谷歌等搜索引擎监视着我们的网页浏览情况,新浪微博、腾讯微博好像对我们的朋友很熟悉,还有就是QQ和QQ空间总能给我们推荐那些似曾相识的朋友,但是Heven觉得我们离真正的大数据时代还有不小距离,但是一直都在。为什么这么说呢?
一、硬件条件不全:首先是网速的问题,大数据的处理必须要求高速的基础网络,而我国网络拥堵是普遍的现象,要解决现在大数据的处理是很难达到的,几乎是不可能的。
其次是处理信息的设备太少:据统计,互联网上一天产生的信息量大约有800EB,如果装在DVD光盘中要装1.68亿张、装在硬盘中要装80万个。而处理这些数据的互联网公司设备却极其少,如百度在京、山西和内蒙三地数据处理器才刚刚超过十万台,拥有70万个CPU和4000台服务器;腾讯数据平台设备8400台,单集群5600台,总存储100PB+;日新增数据200TB+,月数据增长率10%,日均JOB数100万,日均计算量5PB,但是腾讯数据总记录已经超过了375万亿条。可见现在设备是很难完全精准地处理这些互联网数据的,而大数据时代是能够完全处理现下数据并能实现精准定位网民的动向,所以说进入大数据时代还为时尚早。
二、专业型人才太少:Heven认为,大数据相关人才的欠缺将会成为影响大数据市场发展的一个重要因素,不可否认的是大数据处理人才的奇缺,不管是国家还是各大互联网公司都在加大对大数据处理人才的挖掘,如2014年5月19日,由中国人民大学、北京大学、中国科学院大学、中央财经大学、首都经济贸易大学五所高校联合组建的大数据分析硕士培养协同创新平台在中国人民大学启动;阿里集团2012年7月10日就已宣布,设立首席数据官岗位(CDO),负责推进“数据分享平台”战略。如此种种,说明大数据处理人才奇缺,也说明培养专业型大数据处理人才的迫在眉睫。
三、数据孤立,各自为战:目前国内互联网的现状是BAT三巨头各自为战,百度连接人和信息,独占了信息入口;阿里巴巴连接人和商品,独占了交易入口;腾讯连接了人和人,独占了社交入口。而他们都是死死的把握自己的入口,不让数据共享,试想这样怎样才能实现大数据化,一部分的数据又如何才能判断网民的真实意图?所以广告不能精准投放,网页的相关性不强,互联网的智能化发展只能在艰难进行。
Heven认为互联网的本质是理解用户并走向智能化,而大数据的精确处理也就是为了实现互联网的智能化,同时也是实现智能化的基础,但目前互联网大数据的处理还处在一个前期的阶段,不管是设备,人才,数据资源共享方面都是急需解决的问题,所以说,我们离真正的大数据时代还有不小距离。以上只是Heven的个人见解,表述的不是很完整,希望大家提出意见,共同进步。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03