
从公众平台分析,浅谈怎么做数据分析
前言:不知道有多少产品经理的童鞋平常工作会负责数据分析的内容?又有多少负责数据分析内容的童鞋有去了解数据分析?——前者我有;后者,反正我是没有。
最近由于跟公众平台用户分析内容频繁的接触,天天对着数据晃啊晃的,某个瞬间突然想起虽然跟数据打了这么多年的交道,但自己好像连“数据分析”是什么也懵懵懂懂,顿时细思恐极,于是萌生了好好总结一下的想法。
简单说,数据分析是把大量数据按照一定方法进行分析,形成概括总结的过程,以便采取适当行动。
在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。如一个企业的领导人要通过市场调查,分析所得数据以判定市场动向,从而制定合适的生产及销售计划等。
在互联网营销方面,主要体现在广告投放和活动推送。
通常,广告投放和活动推送前的数据分析可以分为两步走。第一步:确定目标群体。比如,目标群体是18~25岁,上网购物的年轻女性。第二步:描述此群体的活动轨迹。也就是说,知道目标客户群做什么事、在什么时间地点能够找到他非常重要。
数据分析里经常可以看到两个统计术语:同比和环比。
同比分析和环比分析都有增长速度和发展速度两种方法。
ps:当上期/历史同期数据为0时,没有比较意义,不予考虑。
请大家先看两张图:
图1:用户分析昨日关键指标的数据呈现
图2:“日、周、月”统计方法的说明
由图2可知,图一的用户分析是使用了环比增长速度来表示用户的“日”变化情况。
这里有个问题一直困扰着我:用户分析环比到7天前、30天前的数据是否有必要? 是要对比昨天的天气、温度、湿度和7天前、30天前的天气、温度、湿度,以便知道7天后、30天后我该穿什么衣服吗?
个人感觉这边可以去掉周、月的无用数据,增加以“周”、“月”为基数的环比数据。
应该会有童鞋常常纠结于如何选择合适的图表表达数据诉求,在这里也简单介绍几种常用数据分析统计图表的特点、使用方法以及注意点。
折线图主要是在按照时间序列分析指标值变化趋势的情况下使用,是有连续性的。通常情况下X轴设定为时间,Y轴设定为其他指标值。如分析页面PV,UV,转化数(率),周期内交易量,用户增长量等指标整体变化趋势时多用折线图。如下图:
图3:用户增长趋势分析
上图就是表示用户每天(还可以是每小时段、周、月或年)的变化趋势,从图中可得到 “平时工作日的访问比较多,周末的访问比较少”的分析结论。
如果在相同单位下,同时有多个指标,那么就可以细分折线图,如把图3的增长来源组合在一起,可变成下图:
图4:增长来源分析
由上图可得出通过“其他”方式关注公众号的用户是最多,也是说用户比较偏好通过“其他”方式关注公众号,那么后面是不是就需要调整策略,比如侧重这方面的营销等等。
折线图的注意事项
柱形图用于显示一段时间内的数据变化或显示各项之间的比较情况。柱形图常见的有三种:横柱形图,竖柱形图及堆积柱形图。
横柱形图一般用来表示一类项目的横向对比,有一个排名的概念。横柱图的X轴通常代表确定数值大小的刻度尺。下图是按省份分布对用户数量的排名图:
图5:用户属性-省份分布
竖柱形图常用来表示时间序列的指标数值变化情况,这个跟折线图差不多,不同的是竖柱形图偏向于表现数量,折线图偏向于表现趋势。如下图(因为公众平台没有这块的内容,随便百度了一张):
图6:随便百度的图
看到这里,肯定有童鞋会有“横、竖柱形图好像都是好像没什么差别”的感觉,那么他们是否可以互相转换呢?其实是可以的,但是当X轴的名称很长的时候,你去看看效果,保证惊呆你。
堆积柱形图主要显示单个项目与整体之间的关系,它比较各个类别的每个数值所占总数值的大小。比如图3的用户增长的各个指标占比总数量的情况,可整理为下图:
图7:各指标用户增长情况
由上图就可看出每个时间段,各指标的用户增长占比。
柱图的注意事项
饼图只显示一个数据系列 (数据系列:简单说是excel表中的一行或一列的数据)中各项的大小与各项总和的比例。如下图:
图8:用户属性-top10机型分布
请大家注意 “top10”这个字眼,这是在告诉我们饼图比较适合类目数量是10个以内(或只区分部分主要类目,其他类目统计在一起)的场合。另外饼图只表示的比例,要体现对应数量可像上图在右边加上数量的描述。文章来源:CDA数据分析师官网
做成饼图时的注意事项
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10