京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据+银行数据安全何去何从
数据将是未来银行的核心竞争力之一,这已成为银行业界的共识。对于银行来讲,只有拥有强大的“大数据”处理能力,才能使银行数据应用达到价值最大化。在银行信息化、网络化时代,如何利用大数据的优势加强银行机构的内部控制,防范和化解敏感数据信息泄密风险,是当前银行业信息安全关注的重点和难点。
大数据来了 出路OR死路?
根据麦肯锡《大数据的下一个前沿》报告,无论从大数据应用综合价值潜力维度,还是平均数据量而言,银行的大数据应用综合价值潜力都非常高,是继互联网及运营商之后大数据产生最为庞大的热点行业之一,已然成为大数据应用的一片沃土。
大数据的数量巨大、形式多样同时具有瞬时性,可以从移动设备、社交应用、网页访问以及第三方获取,包括信用消费等方面的数据。以正确的数量模型和分析方式来契合银行目前的业务需求,是合理利用大数据,达成更多经济回报的关键。通过大数据技术把收集的海量碎片化数据有效整合,可以在市场分析、客户服务、客户研究、产品研发及产品测试等方面节约成本、提高效率。
没有数据安全就没有信息安全,数据安全管理必须贯穿数据生命周期的全过程。大数据的应用存在运维风险和运营风险等,前者如数据丢失、数据泄露、数据非法篡改、数据整合过程中的信息不对称导致错误决策等,后者如企业声誉风险、数据被对手获取后的经营风险等。因此,必须加强数据管控。尽管大多数银行企业经过多年系统的信息安全建设,但是仍然缺乏内容识别相关的措施来配合防护,当前数据内容防护层面临着识别难、定位难、防护难的系列问题。
明朝万达——实现银行敏感数据安全管理
作为中国领先的内网安全、数据安全和移动安全解决方案提供商,北京明朝万达专注于银行数据安全,以自主可控的国产密码算法为基础,以符合国家和行业监管为要求,基于“安全服务”理念,为银行客户量身打造整体数据安全解决方案。同时,结合银行业务应用场景以及银行的安全管理和特性需求,建立安全服务体系,实现银行内敏感数据从产生、存储、使用、流转、追踪到销毁的整个生命周期的安全管控。
深耕金融业多年,公司凭借优质的产品、专业的服务和良好的信誉,已经成功服务于国开行、中国银行、光大银行、中信银行及中国农业银行等众多客户,在大数据时代,明朝万达将继续秉承“安全服务于业务”的理念,持续为银行的智能化数据安全管理建设献策献力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05