京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用数据分析做好客服管理,提升客服质量
数据信息化时代,市场竞争日益激烈,数据分析已成为企业运营的一项常规基础性工作,企业利用数据挖掘市场机会,洞察客户需求,提高运营效率,降低运营成本,并减少运营管理决策风险。
作为最直接与客户接触的部门,客服部,在服务客户的过程中会产生大量的原始数据,如果客服部能利用好这些数据,做好统计分析,将会帮助客服部及时发现问题,做出科学、合理的决策,从而提升服务质量,同时详实的数据也便于企业内部沟通与分享。
客户服务软件提供商-易维帮助台,基于saas模式,支持工单管理、多渠道客服、帮助中心,数据统计,并提供远程协助,适合预算有限的中小企业,也适合集团公司的协作合作。其中的数据统计功能,能为企业提供多达40余种的数据报表,让企业全面掌握客服部的客户服务情况、度量服务绩效、客户规模及结构状况等。
易维帮助台的数据统计报表主要分为三大类,包括绩效指标,分布排行和客户分析,通过下面的文字我们来了解其数据统计如何服务于企业的客服运营管理,提升客户服务质量的。
绩效指标
主要衡量客服的工作数量和质量,在选择的时间范围内,单个客服或客服组处理工单的数量,处理工单所需的时长、SLA达标率、问题解决率、客户满意度等等。
每到统计客服绩效的时候,企业就可以把易维帮助台的绩效指标作为参考,在单位时间内谁处理的工单数量多,响应时长短,解决时间快、解决率和客户满意度高,来判断客服的服务情况。
分布排行
针对客户服务请求和工单属性数据的分布分析,以及客服工作的排名,主要包括了服务请求分布,工单属性分布、Top10客户统计和Top10客服组统计。
服务请求分布中的时间段分布和IP地址来源分析,可以让企业对某个时间段的客户服务请求了如指掌,根据时间段和IP地址的波动来安排客服值班数量和时间,免于企业浪费资源,客服又能得到充分的休息。
工单属性分布中可以查看工单类型、服务目录中哪一项占比高。如果工单中问询占比高,是不是可以考虑增加客服人手;如果服务目录中对产品的升级问题占比高,是不是应该考虑在帮助中心的知识库发布关于升级问题的文章,或者让研发部去修正bug。
客户分析
统计了直接与工单相关和参与社区活动(分享、评论、提问、回答)的客户,通过这个分析,让企业了解客户的活跃度和黏性。
在客户分析的概览中显示企业客户的存量和增量,客户的活跃度,客户是企业/个人,以及企业的客户规模分布。
Top10客户/客户组,展示哪一个客户或客户组(企业)最为活跃,提交的服务请求最多,针对这些数据企业可以判断谁是重要客户,或者通过活动增加不活跃客户的黏性。
以上内容小编只介绍了易维帮助台部分的数据统计报表,用户可到他们官网注册,试用其他数据报表。另外易维帮助台支持企业完整导出原始数据记录,进行更为专业的数据挖掘与分析,相信这将会成为企业调整计划或制定政策有力的依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29