京公网安备 11010802034615号
经营许可证编号:京B2-20210330
保险业大数据运用何以“从0到1”
众所周知,保险业正处于科技推动变革的阶段,以互联网、移动社交网络、云计算和大数据为代表的数字化技术,正加速影响着保险业的日常运作。
“在所有的新技术中,大数据对保险行业的影响最具颠覆性。”波士顿咨询公司与中保协近日联合发布的《互联网+时代,大数据改良与改革中国保险业》指出,一方面,大数据分析将“改良”传统保险行业的日常运作,这种影响体现在价值链的方方面面,以风险评估与定价、交叉销售、客户流失管理、理赔欺诈检测及理赔预防与缓解为重点;另一方面,大数据与互联网还将“颠覆”传统的保险业务边界与商业模式,如基于使用的保险(UBI)以及平台化的生态圈,并带来大量的跨界竞争与颠覆场景。
事实上,大数据对保险价值链的影响体现在方方面面,根据波士顿咨询的研究,最重要的“改良效应”发生在五个环节,即风险评估与定价、交叉销售、客户流失管理、理赔欺诈检测、理赔预防与缓解。
就风险评估与定价方面而言,在大数据时代,风险特征的描述被极大丰富,数据资源的获取也将越发便利。在车险领域,除获得车型数据、汽车零整比数据、二手车数据以外,险企还使用车载传感设备收集驾驶员行为风险,开发UBI车险;在寿险领域,险企利用可穿戴设备能够实时监控人体健康情况(运动量、睡眠、心跳等),弥补了生命表对于洞察细分群体的人体健康及生死概率的能力不足。
值得一提的是,对来自互联网和社交媒体的非结构化数据分析,有助于识别消费者潜在风险。如美国ZestFinance通过对贷款申请人超过1万条的互联网数据进行分析,为银行贷款、信用卡及保险提供高质量的担保评估,使得违约率比行业平均水平低60%左右。而中国平安相关负责人日前也透露,未来旗下的前海征信将会联手保险机构,帮助识别投保人的潜在风险,以进行精准定价、识别欺诈。
而对于最大化客户价值、促进业务协同的最重要手段,交叉销售也能在大数据时代被提质增效。鉴于只有细分与洞察客户,精确了解其关键需求,才能大幅提升交叉销售的准确率。波士顿咨询公司认为,险企需要建设分析型客户关系管理平台,以对客户数据进行统一管理并建立客户分析模型,发挥共享与集约优势,避免专业公司各自为战。而对于业务结构不均衡的集团,更适合由强势业务带动弱势业务发展,如果能够实现客户资源跨法律实体共享,至少可以挖掘10%~20%的潜在市场价值。
此外,借助大数据手段,险企还可以显著提升反欺诈的准确性和及时性。大数据模型可以自动识别出理赔中可能的欺诈模式、理赔人潜在的欺诈行为以及可能存在的欺诈网络。同时,要确保数据资源,数据越完整、越多样,则越有可能通过复杂的算法与分析识别可能的欺诈行为,其中必要的数据包括理赔历史记录、保单信息、其他保险公司数据、医疗保险数据、事故统计数据、征信记录、犯罪记录、社交网络数据等。
值得注意的是,虽然险企都非常看重对大数据的应用,但是正如中国平安董事长马明哲近日在该公司半年报沟通会上所言,“不是人人都有大数据,99%的公司包括互联网企业拥有的只是信息,还不能说是大数据”。
马明哲坦言,要在互联网上判断一个人的全貌,必须掌握其3600种不同因子的数据,尽管中国平安有20多家金融公司,拥有超过7亿用户的多维度信息和数据,包含几百个因子,但也是冰山一角而已。所谓大数据,必须有足够大的量和频率,要有多样性,用户的消费数据、社交数据、日常行为数据等,并且能够智能互联、动态分析,否则只是局部的资料而已。
在波士顿咨询调研的险企中,63%的车险公司已开展车联网应用,16%已开展平台生态圈实践。波士顿咨询指出,相比欧美市场,在中国推广UBI车险似乎“有些尴尬”,考虑到国内车险整体盈利堪忧,若以更优惠的价值作为切入点,很可能造成更大程度上的行业亏损。除非险企能够利用车联网更好地选择风险、识别理赔欺诈并提供增值服务,追求在综合成本率和客户满意度方面的质量提升。
而对于目前穿戴式设备在健康险中的应用,目前国内险企普遍采取观望态度,虽然认为可穿戴设备未来发展潜力巨大,但法律风险及伦理风险巨大,亟须相关法律法规进一步完善,因此相比人体健康数据,险企更希望获得来自医疗、体检机构的电子病例,用于理赔关联和产品定价。
不过,当前险企一致看好垂直平台生态圈,认为互联网时代险企势必与各行各业开展多项合作、提供一揽子服务,共同构建数字化保险的平台生态圈。对此,波士顿咨询公司建议,目前生态圈建设难度较大、周期较长,涉及商业模式改良及资源整合等众多难题,尚需险企勇于投入、耐心求索。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09