京公网安备 11010802034615号
经营许可证编号:京B2-20210330
保险业大数据运用何以“从0到1”
众所周知,保险业正处于科技推动变革的阶段,以互联网、移动社交网络、云计算和大数据为代表的数字化技术,正加速影响着保险业的日常运作。
“在所有的新技术中,大数据对保险行业的影响最具颠覆性。”波士顿咨询公司与中保协近日联合发布的《互联网+时代,大数据改良与改革中国保险业》指出,一方面,大数据分析将“改良”传统保险行业的日常运作,这种影响体现在价值链的方方面面,以风险评估与定价、交叉销售、客户流失管理、理赔欺诈检测及理赔预防与缓解为重点;另一方面,大数据与互联网还将“颠覆”传统的保险业务边界与商业模式,如基于使用的保险(UBI)以及平台化的生态圈,并带来大量的跨界竞争与颠覆场景。
事实上,大数据对保险价值链的影响体现在方方面面,根据波士顿咨询的研究,最重要的“改良效应”发生在五个环节,即风险评估与定价、交叉销售、客户流失管理、理赔欺诈检测、理赔预防与缓解。
就风险评估与定价方面而言,在大数据时代,风险特征的描述被极大丰富,数据资源的获取也将越发便利。在车险领域,除获得车型数据、汽车零整比数据、二手车数据以外,险企还使用车载传感设备收集驾驶员行为风险,开发UBI车险;在寿险领域,险企利用可穿戴设备能够实时监控人体健康情况(运动量、睡眠、心跳等),弥补了生命表对于洞察细分群体的人体健康及生死概率的能力不足。
值得一提的是,对来自互联网和社交媒体的非结构化数据分析,有助于识别消费者潜在风险。如美国ZestFinance通过对贷款申请人超过1万条的互联网数据进行分析,为银行贷款、信用卡及保险提供高质量的担保评估,使得违约率比行业平均水平低60%左右。而中国平安相关负责人日前也透露,未来旗下的前海征信将会联手保险机构,帮助识别投保人的潜在风险,以进行精准定价、识别欺诈。
而对于最大化客户价值、促进业务协同的最重要手段,交叉销售也能在大数据时代被提质增效。鉴于只有细分与洞察客户,精确了解其关键需求,才能大幅提升交叉销售的准确率。波士顿咨询公司认为,险企需要建设分析型客户关系管理平台,以对客户数据进行统一管理并建立客户分析模型,发挥共享与集约优势,避免专业公司各自为战。而对于业务结构不均衡的集团,更适合由强势业务带动弱势业务发展,如果能够实现客户资源跨法律实体共享,至少可以挖掘10%~20%的潜在市场价值。
此外,借助大数据手段,险企还可以显著提升反欺诈的准确性和及时性。大数据模型可以自动识别出理赔中可能的欺诈模式、理赔人潜在的欺诈行为以及可能存在的欺诈网络。同时,要确保数据资源,数据越完整、越多样,则越有可能通过复杂的算法与分析识别可能的欺诈行为,其中必要的数据包括理赔历史记录、保单信息、其他保险公司数据、医疗保险数据、事故统计数据、征信记录、犯罪记录、社交网络数据等。
值得注意的是,虽然险企都非常看重对大数据的应用,但是正如中国平安董事长马明哲近日在该公司半年报沟通会上所言,“不是人人都有大数据,99%的公司包括互联网企业拥有的只是信息,还不能说是大数据”。
马明哲坦言,要在互联网上判断一个人的全貌,必须掌握其3600种不同因子的数据,尽管中国平安有20多家金融公司,拥有超过7亿用户的多维度信息和数据,包含几百个因子,但也是冰山一角而已。所谓大数据,必须有足够大的量和频率,要有多样性,用户的消费数据、社交数据、日常行为数据等,并且能够智能互联、动态分析,否则只是局部的资料而已。
在波士顿咨询调研的险企中,63%的车险公司已开展车联网应用,16%已开展平台生态圈实践。波士顿咨询指出,相比欧美市场,在中国推广UBI车险似乎“有些尴尬”,考虑到国内车险整体盈利堪忧,若以更优惠的价值作为切入点,很可能造成更大程度上的行业亏损。除非险企能够利用车联网更好地选择风险、识别理赔欺诈并提供增值服务,追求在综合成本率和客户满意度方面的质量提升。
而对于目前穿戴式设备在健康险中的应用,目前国内险企普遍采取观望态度,虽然认为可穿戴设备未来发展潜力巨大,但法律风险及伦理风险巨大,亟须相关法律法规进一步完善,因此相比人体健康数据,险企更希望获得来自医疗、体检机构的电子病例,用于理赔关联和产品定价。
不过,当前险企一致看好垂直平台生态圈,认为互联网时代险企势必与各行各业开展多项合作、提供一揽子服务,共同构建数字化保险的平台生态圈。对此,波士顿咨询公司建议,目前生态圈建设难度较大、周期较长,涉及商业模式改良及资源整合等众多难题,尚需险企勇于投入、耐心求索。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29