
如何SPSS质量数据集的建立与简单管理
本文主要介绍SPSS对质量信息的一般性管理,包括质量数据集的建立和简单处理、质量数据的统计描述等。SPSS质量数据集的建立与简单管理
数据集是统计数据的简单集合,一般具有大量性、差异性和同质性三个特征。数据集是统计软件研究的基本单元,是统计分析的起点。创建一个稳健、有效率的数据集对于正确的统计分析十分重要。质量信息数据集就是SPSS针对各类质量信息、数据所建立的数据集合,SPSS利用质量信息数据集对其进行统计分析。质量信息数据在这里是指生产、检验等过程中所得到的质量信息、数据,对于获得的不是数据性的信息,要进行数据化处理,转化为可以统计分析的数据,进而建立数据集。1.建立SPSS质量数据集
下面,以2004年山东省质量技术监督局名牌万里行活动所调查的关于山东各名牌产品知名度的部分数据、信息为例,建立SPSS质量数据集:⑴信息数据化,确定变量值。
问卷对知名度调查的问题是:您听说过下列哪些名牌产品?所涉及的可供选择答案共有13种产品,将产品和被调查者的年龄、文化程度及从业岗位作为变量,各取变量名。针对每一产品有“听说过”和“没有听说过”两种回答,则分别用变量值“1”和“0”来表示;对于被调查者的各变量,用“1”、“2”分别表示“男”、“女”;用“1”、“2”、“3”、“4”、“5”分别表示“高中以下”、“高中或中专”、“大专”、“大学”、“大学以上”;用“1”、“2”、“3”、“4”、“5”分别表示“机关或事业单位”、“企业”、“军人”、“农民”、“其他”。⑵变量、变量值的录入
启动SPSS后,将自动打开SPSS的数据编辑器,在其左下端有两个页标签,其中,“DataView”是数据窗口,“VariableView”是变量属性窗口,前者录入变量值,后者输入变量名并定义其各个属性。最后,SPSS用“sav”类型保存其数据集。
值得一提的是,在确定变量属性时,单击“Values”列格中的阴影方框,可以定义该变量的标签。
2. SPSS数据集的简单管理
SPSS数据集内数据的简单管理包括数据、单元格的查找,观测量的分类排序,数据文件的分类汇总和数据的选择等。这些功能主要由“Data”下拉菜单中的各个命令来完成,这与excel并没有很大的区别,并且这些功能excel也能够较好地完成。质量数据的统计描述
要对质量数据做好统计分析,首先要对这些数据进行描述性统计分析。SPSS统计软件对质量信息的描述统计分析功能主要集中在DetiveStatistics菜单中,主要包括建立质量数据频率表,质量数据的一般性统计描述、探索性分析和交叉统计等。1.建立质量数据频率表
SPSS统计软件建立数据频率表由“Analyze”菜单中“DetiveStatistics”的“Frequencies…”项来完成。具体操作如下:
打开“Analyze”菜单,选择“DetiveStatistics”中的“Fre?鄄quencies…”项,弹出“Frequencies”对话框,将两个变量选入“Variable(s)”框内。单击“Statis?鄄tics”按钮。可以弹出“Frequencies:Statistics”对话框,其中,“Per?鄄centileValues”复选框组定义了需要输出的百分位数;“Centralten?鄄dency”复选框组主要用来定义描述集中趋势的一组指标:均值(Mean)、中位数(Median)、众数(Mode)、总合(Sum);“Disper?鄄sion”复选框组用于定义标准差(Std.deviation)、方差(Variance)、全距(Range)等描述离散趋势的一组指标;“Distribution”复选框组用于定义描述分布特征的两个指标:偏度系数(Skewness)和峰度系数(Kurtosis)。点击“Statistics”对话框中的“Charts”按钮可以选择是否在输出结果中输出所要求的辅助图形,例如条形图、直方图等,本例选择饼图(Piechart)。点击“Statis?鄄tics”对话框中的“Format”按钮可以定义输出频数表的格式。最后,点击“OK”,可以得到频率表和频率饼图,如文中图一、表一所示。2.质量数据的一般性统计描述
质量数据的一般性统计描述主要是指对连续性随机变量进行的一般描述统计。这个过程既可以对变量进行描述性统计分析,列出一系列相应的统计指标,还可以将原始数据转换成标准正态评分值并以变量的形式存入数据库以供分析。这一功能是由SPSS的“Analyze”菜单中“DetiveStatistics”的“Detive…”项来完成。
例如,某一企业要统计每个车间(共两个)在一个月内所付出的质量成本,并统计预防成本、鉴定成本、内部损失成本和外部损失成本的差异,由所统计的数据建立SPSS数据文件。要求对这些数据进行一般性统计描述,得到各项所需指标,操作如下:
打开“Analyze”菜单选中“DetiveStatistics”中的“Detions…”项,则会弹出“De?鄄tives”对话框。将变量均选入“Variable(s):”框内,如果选中“Savestandardizedvaluesasvariables”复选框,则将变量的原始数据的标准正态评分存为新变量,列在后面(此例不选)。如果,点击“De?鄄tives”对话框中的“Options…”按钮,则会弹出“DetionsOp?鄄tions”对话框,在其中可以设置各项所需的统计指标。CDA数据分析师学习
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26