
大数据迎来家具行业营销新时代
你是否想过,当你打开电脑,连上网络的那一刻,你的信息就已经开始暴露了。你的开机记录、IP地址、甚至常用软件等等信息都已经出现在各种所谓安全防护软件的后台数据中;而当你拥有一台手机,从开机到关机、你的位置、信号强度、忙闲状态等信息数据都将出现在运营商的网络里……
大数据迎来营销新时代
以你的手机为例,运营商可以通过对你手机的信息进行分析,便可以轻而易举知道你亲朋好友的联系方式,根据开机、关机时间知道你的作息习惯,你几时固定出现在某个地方,出行工具是什么等等。在一定意义上,只要运营商想知道,他都可以通过你的手机获得相应信息。
当讲到这时,很多人会愤怒。在信息化方便生活的同时,也在逐步瓦解自身“隐私”,个人习惯、爱好就这样暴露在了陌生人的眼前,更可怕的是你还不知道他们会用这些数据来做什么。但你改变不了这种现状,因为在信息化时代你不可能离开互联网和手机。
相比消费者的无奈,对于营销人员来说,大数据时代的来临,整合营销传播活动是可喜的,它将带来前所未有的机遇。在大数据时代,如果你有一个平台,你就可以轻而易举知道目标受众的“定位”信息,再加以收集、整合和分析,就可以得出相应的营销手段。所以,不得不说在大数据时代,营销人员的整合思维模式是相当重要的。
家具行业的大数据时代
如果把大数据局限于互联网和手机等行业,那就是一种思维的局限。对数据进行整合,得出相应的营销方法,放在任何行业都适用。
在家具行业,卖场是商家离消费者最近的地方,卖场每天也都将产生大量的数据。在一家家具店面,每天进入店面的人数是多少,以哪类人群为主,哪个时间段顾客量最大,哪类产品销售情况最理想,在导购员介绍时,顾客买与不买的原因又是什么等等。每一个消费行为的背后都是一次数据的产生,但更多店面没有对这部分数据进行详细的记录,更多的是笼统的概括。由于没有记录,数据不准确,当然也就不会到达整合数据这一环节。
相比而言,这种对于数据的收集、整合和分析的思维对于家具行业来说还比较欠缺。特别表现在产品设计上。设计师在设计产品前,往往是对整个大市场进行过完整而全面的调查了解的,知道怎样的设计才有可能获得市场的认可。但家具产品的设计概念一般都是“东拼西凑”,设计师们往往没有从消费者真正的需求出发去设计,而是收集、沿用成型产品的概念。
曾有位管理学家说过:“市场营销的目的是充分认识和了解消费者,让产品和服务满足消费者的需求,不用推销消费者就会主动购买。”但反观家具业的营销,只停留在打价格战等的初始阶段,更多想着怎么卖出产品,而忘了细想这是不是顾客想要的产品。
大数据时代,家具人需要整合思维,如何做好整合,首先一步就是如何获得数据。除了少数的家具大企业已经把触手伸向了电商,目前家具行业跟消费者最直接的交流主要还是体现在卖场的交易过程中,在卖场的交易过程中如果你学会了获得数据,整合数据,相信你就比别人先行了一步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28