京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代到来 众安保险幸运儿“步步保”3天销售3.6万份
保险业对于可穿戴设备一直抱有极大期待,尤其是在健康险领域,可穿戴设备意味着能够获取客户的身体数据和行为习惯,它是实现精准市场营销、精确风险定价、精细客户服务的基础。近日,国内首家互联网保险公司众安保险,便推出了与可穿戴设备及运动大数据结合的健康管理计划。
“你过去30天平均运动步数为7808步,可免费体验一个月保额10万的重大疾病险。”近日,成都市民罗小姐习惯性的开启小米运动APP查询运动数据时,一个推送的活动引起了她的注意。罗小姐查询发现,被推送的“步步保-运动变现计划”,实则是众安保险首个与可穿戴设备“合体”的健康险产品。
记者调查发现,这个号称“与可穿戴设备及运动大数据结合的健康管理计划”,将以用户运动量作为重大疾病保险的定价依据,同时用户的运动步数还可以抵扣保费。分析人士认为,随着大数据模式在健康险等领域的嵌入,相关市场精准化定价或将随之开启。
可穿戴设备植入健康险
据众安保险介绍,“步步保”通过与可穿戴设备及运动大数据结合,在众安保险的合作伙伴小米运动、乐动力APP中开设入口,用户投保时,系统会根据用户的历史运动情况以及预期目标,推荐不同保额档位的重大疾病保险保障(目前分档为20万、15万、10万),用户历史平均步数越多,推荐保额就越高,最高可换取20万重疾保障。
其中,如果用户利用“步步保”,在参加健康计划前30天的平均步数达到5000步,则被推荐10万保额重大疾病保险保障;在申请加入健康计划后,申请日的次日会作为每月的固定结算日,只要每天运动步数达到设定目标,下月结算时就可以多免费1天。
而保单生效后,用户每天运动的步数越多,下个月需要缴纳的保费就越少。对于这种以运动因子作为实际定价依据的保险服务,众安保险称其为“国内首款与可穿戴设备及运动大数据结合的健康管理计划”,并表示“未来会接入更多可穿戴设备和运动APP,希望能够全网覆盖运动人群,以求产品定价和规模优势的提升。”
记者查询小米运动APP发现,在关注“步步保-运动变现计划”时,提示众安保险需要访问部分数据,包括身高、体重、步数、时长。
事实上,“步步保”并不是国内首款将运动数据与健康险保费挂钩的产品。早在去年,阳光人寿就推出了“阳光星运动健康管理计划”,客户一年运动累计达标超过时间,可免费享受高额重疾险保障,并随即于2014年7月15日正式上线销售。
不过,“移动互联网技术和相应的用户激励机制”,并未能够令该产品如愿受到市场追捧。截止8月24日,阳光人寿的这款产品在其天猫旗舰店仅累计售出151份。相较而言,“步步保”则或更加幸运,据众安保险发布数据,该产品正式推广上线3天的累计客户量已超过3.6万人。
“大数据+”健康险迎新钱景
尽管“步步保”仍有待付费市场的考验。但值得关注的是,通过移动穿戴设备对客户健康数据进行监测,进而参与客户健康管理似乎已成为业内默认的方向。
此前,因为无法时时掌握被保险人的健康状况,无法与医院实现联网系统对接,导致健康险难以做到精准定价、赔付成本亦居高不下。以2014年互联网保险保费为例,寿险、健康险等传统人身保障型险种的占比刚刚过10%。而随着互联网产业的发展,特别是新技术和新模式的出现,为互联网保险的发展提供的良好技术支持和环境保障,健康险市场也被认为或将迎来新“钱”景。
就在日前举行的“2015中国保险业发展年会”上,保监会主席项俊波表示,互联网等新技术、金融跨界经营将对保险业产生深远影响、带来深刻变化。大数据广泛应用,保险经营管理将全面实现精准市场营销、精确风险定价、精细客户服务。而在更多的业内人士看来,互联网保险已经进入3.0阶段,即跨界共创,通过系统化手段实现综合的跨界的共同创新。
在互联网保险公司开发的基于云端的数据系统下,“碎片化”产品在商业上也变得有利可图,一经启动,就可激发巨大潜在市场、获得海量的销售量。“一个基于互联网的同心圆管理模式正在形成,包括医院、社区、家庭多位一体的医疗和健康管理模式,对保险业而言,无论是在医疗和健康管理,还是在长期护理和养老服务方面都有巨大的发展空间。”某险企负责人表示。
虽然在大数据与保险业融合的过程中,依然有不少问题引发争议。但对于用新技术新平台探索重疾险等健康险业务,众安保险认为其风险是可控的。
以“步步保”为例,众安保险指出,其并没有降低投保门槛,并通过将保险产品与运动场景相结合,相反吸引大量热爱运动的健康群体,进而降低了出险和理赔概率;同时,通过充分的大数据优势,以云计算来进行分析、预测大量用户及其产生的运动大数据,以释放更多数据的隐藏价值,并参与到理赔和反欺诈的相关工作中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16