
大数据不是公司管理万能药_数据分析师培训
“嗯,为了证明,人们不惜编造数据。14%的人都知道这一点。”――《辛普森一家》霍默•辛普森语 电脑天才们宣称,大数据时代已经来临。 电脑已经强大到可以收集、汇总数以兆兆字节计的信息来回答各种问题,从如何安排员工薪酬待遇,到某支抵押贷款债券的风险有多大,无所不包。 虽然数据不会说谎,但人们使用数据的方式却极为主观。量化分析在2007年的金融危机中起到了推波助澜的作用,但是如果企业只是简单地认为,光靠一屋子摆弄数据的分析师就可以解决问题,那么结果不仅会对他们的资产损益造成损害,同时也会损害他们的企业文化和员工的福利。 企业执行委员会(Corporate Executive Board)的执行理事施维坦克•沙表示:“数据可以帮助人们做出决策,但如果觉得所有重要的决策都可以交给电脑那就错了。”企业执行委员会最近出版了一份调查报告,名为《超越洞察力赤字:大数据时代的大判断》(Overcoming the Insight Deficit: Big Judgment in an Era of Big Data.)。报告指出,认为只要有10个分析师,就能解决公司所有数据问题的想法是错误的。
未来那些最擅于利用数据分析来引导决策的企业将获得许多竞争优势,对于这一点没什么人会表示怀疑。不过施维坦克•沙表示,仅仅拥有数据是不够的。根据企业执行委员会,在一份针对4,941人进行的调查中,只有38%的员工称得上是“消息灵通的怀疑主义者”,他们依赖数据,但并不盲从,既不害怕置疑数据分析的结果,也敢于从他人那里索要反馈。43%的员工对数据坚信不疑。还有19%的员工很少相信数据分析,喜欢凭直觉做事。 施维坦克•沙认为:“我们必须面对这样一个事实:我们的教育系统没有教会我们如何有效地分析数据。
我们向受访者展示了一些图表,问他们这些图表代表什么意思。结果就连那些从常青藤名校毕业的学生也很难搞清这些数据究竟代表了什么。”这种教育的缺失并非没有办法弥补。该研究显示,仅仅向学生提供培训,教给他们分析工具和软件的使用方法还不够,更重要的是教会他们如何与数据互动。换句话说,就是如何批判性地思考。 要想让员工成为“消息灵通的怀疑主义者”,企业可以建立一种数据导向型的文化(但并不是成为数据的奴隶),从CEO开始自上而下地推广。
如果CEO身体力行,其他员工也很可能参与进来。 施坦维克•沙表示,另一种有效的方法就是在雇佣数据分析师的时候,不仅要考虑他们的分析能力,还要考虑他们是否有能力和意愿去向其他人解释这些数据代表了什么意思。“招聘分析师时还得考虑指导技能,”他说。“每一个分析师都能改善几十、甚至几百个人的决策能力。” 葛兰素史克制药公司(GlaxoSmithKline)正在用数据分析来挑战一些人们认为无可辩驳的常理。该公司北美制药部的IT高级副总裁乔•托伊介绍道,葛兰素史克正在利用数据分析来重新设计销售运作,把这项过去完全依赖人脉的业务转变成一项依赖数据的业务。 托伊称:“决定销售人员的薪酬时,我们在使用哪些数据、不使用哪些数据的问题上做出了艰难的决定,由此树立了良好的声誉。”
自从20世纪80年代初开始,制药公司就习惯使用从厂商那里获得的医生处方数据来决定销售人员的薪酬。医生开出的处方越多,销售人员的提成就越高。因此,医生吃回扣的现象也屡见不鲜,许多医生都被请去吃免费的饭,拿免费球票。因此制药公司的这种提成制度造成了一种医生和医疗代表之间暗藏猫腻的关系,也使一些病人怀疑为什么医生要开这种药,而不是那种药。 从去年七月开始,葛兰素史克公司废止了这种提成模式。现在公司主要依赖对医生和管理人员的调查,以及对产品知识和业务敏锐度的考核来决定销售人员的奖金 。
最高管理层的支持、透明的激励系统,以及消费者的正面反应降低了在销售部门中推行这种新机制的难度。托伊表示:“现在销售人员和医生的关系变得不那么重要了,更重要的是事实和科学。” 葛兰素史克公司在与政府和保险公司的谈判中也奉行了以数据为指导的策略。葛兰素史克与默克(Merck)和辉瑞(Pfizer)等公司竞争着一块非常有限的市场蛋糕,不过托伊表示,数据分析正在为葛兰素史克带来某种优势。 北卡罗来纳州蓝十字与蓝盾协会(Blue Cross and Blue Shield of North Carolina)信息管理与分析服务副总裁苏珊•海默•穆塔夫指出:医疗保健市场瞬息万变,有效的数据分析如果得到正确使用,就可以节约许多渠道成本。 “节约成本的唯一方法就是检验信息,进行分析,”穆塔夫说。“成本是从什么地方产生的?哪些疗法是有效的?它是在哪交付的?”
去年,北卡罗来纳蓝十字与蓝盾协会把许多来自不同部门的分析师集中在同一个部门里,以方便他们进行协作。同时该公司也希望雇佣一些不仅能够分析数据、还能用其它人能够理解和接受的方式提交数据的分析师。 后来该公司的管理层意识到,让一群统计学博士花时间获取数据是很荒唐的,于是他们投入大量资金建立了一个卓越中心(Center of Excellence),卓越中心的分析师以发现问题、解答问题为主,而不是四处寻找数据并检验它们的准确性。 穆塔夫表示,这些变革导致公司的成本出现显著下降,并且提高了客户的满意度水平。卓越中心的建立已使公司节省的医疗开支达到了初始开支的将近19倍。
尽管以数据为中心的做法已经使北卡罗来纳州蓝十字与蓝盾协会获得了不小的成功,但该公司仍有一些员工至今不相信数据分析是公司未来成功的关键。要说服这些员工也是个不小的挑战。 穆塔夫说道:“我们需要让人们理解,今天的工作环境已经和三四年前不同了。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28