京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据不是公司管理万能药_数据分析师培训
“嗯,为了证明,人们不惜编造数据。14%的人都知道这一点。”――《辛普森一家》霍默•辛普森语 电脑天才们宣称,大数据时代已经来临。 电脑已经强大到可以收集、汇总数以兆兆字节计的信息来回答各种问题,从如何安排员工薪酬待遇,到某支抵押贷款债券的风险有多大,无所不包。 虽然数据不会说谎,但人们使用数据的方式却极为主观。量化分析在2007年的金融危机中起到了推波助澜的作用,但是如果企业只是简单地认为,光靠一屋子摆弄数据的分析师就可以解决问题,那么结果不仅会对他们的资产损益造成损害,同时也会损害他们的企业文化和员工的福利。 企业执行委员会(Corporate Executive Board)的执行理事施维坦克•沙表示:“数据可以帮助人们做出决策,但如果觉得所有重要的决策都可以交给电脑那就错了。”企业执行委员会最近出版了一份调查报告,名为《超越洞察力赤字:大数据时代的大判断》(Overcoming the Insight Deficit: Big Judgment in an Era of Big Data.)。报告指出,认为只要有10个分析师,就能解决公司所有数据问题的想法是错误的。
未来那些最擅于利用数据分析来引导决策的企业将获得许多竞争优势,对于这一点没什么人会表示怀疑。不过施维坦克•沙表示,仅仅拥有数据是不够的。根据企业执行委员会,在一份针对4,941人进行的调查中,只有38%的员工称得上是“消息灵通的怀疑主义者”,他们依赖数据,但并不盲从,既不害怕置疑数据分析的结果,也敢于从他人那里索要反馈。43%的员工对数据坚信不疑。还有19%的员工很少相信数据分析,喜欢凭直觉做事。 施维坦克•沙认为:“我们必须面对这样一个事实:我们的教育系统没有教会我们如何有效地分析数据。
我们向受访者展示了一些图表,问他们这些图表代表什么意思。结果就连那些从常青藤名校毕业的学生也很难搞清这些数据究竟代表了什么。”这种教育的缺失并非没有办法弥补。该研究显示,仅仅向学生提供培训,教给他们分析工具和软件的使用方法还不够,更重要的是教会他们如何与数据互动。换句话说,就是如何批判性地思考。 要想让员工成为“消息灵通的怀疑主义者”,企业可以建立一种数据导向型的文化(但并不是成为数据的奴隶),从CEO开始自上而下地推广。
如果CEO身体力行,其他员工也很可能参与进来。 施坦维克•沙表示,另一种有效的方法就是在雇佣数据分析师的时候,不仅要考虑他们的分析能力,还要考虑他们是否有能力和意愿去向其他人解释这些数据代表了什么意思。“招聘分析师时还得考虑指导技能,”他说。“每一个分析师都能改善几十、甚至几百个人的决策能力。” 葛兰素史克制药公司(GlaxoSmithKline)正在用数据分析来挑战一些人们认为无可辩驳的常理。该公司北美制药部的IT高级副总裁乔•托伊介绍道,葛兰素史克正在利用数据分析来重新设计销售运作,把这项过去完全依赖人脉的业务转变成一项依赖数据的业务。 托伊称:“决定销售人员的薪酬时,我们在使用哪些数据、不使用哪些数据的问题上做出了艰难的决定,由此树立了良好的声誉。”
自从20世纪80年代初开始,制药公司就习惯使用从厂商那里获得的医生处方数据来决定销售人员的薪酬。医生开出的处方越多,销售人员的提成就越高。因此,医生吃回扣的现象也屡见不鲜,许多医生都被请去吃免费的饭,拿免费球票。因此制药公司的这种提成制度造成了一种医生和医疗代表之间暗藏猫腻的关系,也使一些病人怀疑为什么医生要开这种药,而不是那种药。 从去年七月开始,葛兰素史克公司废止了这种提成模式。现在公司主要依赖对医生和管理人员的调查,以及对产品知识和业务敏锐度的考核来决定销售人员的奖金 。
最高管理层的支持、透明的激励系统,以及消费者的正面反应降低了在销售部门中推行这种新机制的难度。托伊表示:“现在销售人员和医生的关系变得不那么重要了,更重要的是事实和科学。” 葛兰素史克公司在与政府和保险公司的谈判中也奉行了以数据为指导的策略。葛兰素史克与默克(Merck)和辉瑞(Pfizer)等公司竞争着一块非常有限的市场蛋糕,不过托伊表示,数据分析正在为葛兰素史克带来某种优势。 北卡罗来纳州蓝十字与蓝盾协会(Blue Cross and Blue Shield of North Carolina)信息管理与分析服务副总裁苏珊•海默•穆塔夫指出:医疗保健市场瞬息万变,有效的数据分析如果得到正确使用,就可以节约许多渠道成本。 “节约成本的唯一方法就是检验信息,进行分析,”穆塔夫说。“成本是从什么地方产生的?哪些疗法是有效的?它是在哪交付的?”
去年,北卡罗来纳蓝十字与蓝盾协会把许多来自不同部门的分析师集中在同一个部门里,以方便他们进行协作。同时该公司也希望雇佣一些不仅能够分析数据、还能用其它人能够理解和接受的方式提交数据的分析师。 后来该公司的管理层意识到,让一群统计学博士花时间获取数据是很荒唐的,于是他们投入大量资金建立了一个卓越中心(Center of Excellence),卓越中心的分析师以发现问题、解答问题为主,而不是四处寻找数据并检验它们的准确性。 穆塔夫表示,这些变革导致公司的成本出现显著下降,并且提高了客户的满意度水平。卓越中心的建立已使公司节省的医疗开支达到了初始开支的将近19倍。
尽管以数据为中心的做法已经使北卡罗来纳州蓝十字与蓝盾协会获得了不小的成功,但该公司仍有一些员工至今不相信数据分析是公司未来成功的关键。要说服这些员工也是个不小的挑战。 穆塔夫说道:“我们需要让人们理解,今天的工作环境已经和三四年前不同了。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06