京公网安备 11010802034615号
经营许可证编号:京B2-20210330
挖掘大数据价值 推动城市智慧管理(1)_数据分析师考试
大数据,源自于互联网、物联网、云技术的发展,技术的进步产生了纷繁复杂的巨量信息。
如何让大数据为我所用是智慧城市的一个重要命题。中国工程院院士邬贺铨指出,智慧城市是使用智能计算技术,使城市的关键基础设施的组成和服务更智能、互联和有效。
大数据是城市的智慧源泉
大数据将遍布智慧城市的方方面面,是智慧城市的智慧之源。从政府决策与服务,到人们衣食住行的生活方式,再到城市的产业布局和规划,直到城市的运营和管理方式,都将“智慧化”或“智能化”。
大数据为智慧城市建设提供强大的决策支持。在城市规划方面,通过对城市地理、气象等自然信息和经济、社会、文化、人口等人文社会信息的挖掘,可以为城市规划提供强大的决策支持,强化城市管理服务的科学性和前瞻性。大数据在城市管理上的优势将主要体现在交通管理、医疗、社会安全等方面。
应用大数据将极大提高智慧城市政府部门的决策效率和服务水平。智慧城市的建设首先需要一个“智慧政府”,大数据使数据共享成为可能,政府各个部门的既有数据库可以实现高效互联互通,极大提高政府各部门之间的协同办公能力,提高为民办事的效率,进而大幅降低政府的管理成本。
大数据将显著提升智慧城市人们的生活品质。大数据将极大地拓展民众生活空间,引领智慧城市大数据时代智慧人生的到来。大数据是未来人们享受智慧生活的基础,将改变传统“简单平面”的生活常态,通过大数据的应用服务将使信息变得更加广泛、使生活变得多维和立体。通过大数据建立家庭生活档案,智能化管理家庭日程事务、个人健康、安全起居以及外出购物。
同时,大数据将使公共服务与个人生活间的结合更为紧密,在医疗卫生、教育培训、交通、安防等领域为个人提供信息查询、内容分发、移动支付等应用体验,将人们的“简单平面”生活转向“多维泛在”,让智慧城市真正服务于民生。
政企合力实现数据与城市互融
大数据对于智慧城市的重要性不言而喻,但是目前二者并没有实现互融互通,问题出现在哪里
高德三维事业部总经理赵珂告诉笔者,大数据基本原则在于解决海量的数据的提取和整理有价值的信息。其中,最关键的是这些数据能做什么。在他看来,用数据为老百姓服务,才是政府和企业应该共同关注的目标。
从数字城市到智慧城市,政府的建设模式已经悄然发生着变化。赵珂称,政府在积极推动企业投资建设智慧城市,政府的角色已经由之前的主导转变为引导,希望由企业自主参与智慧城市项目建设。这样更加符合市场经济的规律,可以给企业更多的主动性。
对于企业来讲,从被动作业到主动寻求机会,需要的不仅仅是公司实力或者技术的储备,而是思想观念和经营模式的彻底改变。由之前的按时完成项目作业,到现在与政府合作共享,直接带来数据归属的改变,之前数据版权归政府,现在企业投资建设,数据和平台最终都属于企业,企业就会有充分的主动性来挖掘数据价值。
模式转变之后,政府和企业该如何合作完成对数据的挖掘?赵珂认为,首先应该确认的是数据一定靠各家的数据资源一起来做才能做好。随着开放度的提高,政府会同公众分享越来越多的数据,企业也会加深与政府的合作,来进行大数据的整合,最终的目标就是尽可能挖掘数据价值为公众服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05