京公网安备 11010802034615号
经营许可证编号:京B2-20210330
P2P公司用大数据扩大企业边界_数据分析师考试
互联网金融界最火的名词非P2P莫属,伴随着平台数量和类型的快速增长,业界对于P2P业务未来的成长性和发展性,也不禁产生了更多的期待。“大数据”一词,近两年与P2P行业联系紧密,前沿的互联网科技不仅为金融行业带来了更多活力,也帮助P2P行业实现快速成长。
实际上,互联网大数据技术对于P2P公司扩张企业边界,同样具有重要意义。 人言“它山之石可以攻玉”,阿里今年“双十一”物流配送体系在数据的流转和分享模式方面创新,或许可以给我们一些启发。
为应对飙升的物流运量,“双十一”期间,阿里旗下菜鸟网络通过大数据技术,精确计算出了各家快递公司每条线路每天的包裹量,在交易发生之前,很多货物都已能够提前下沉到客户附近的网点,从而极大提升了物流效率。而经过实际产生的数据对比,该系统提供的预测数据准确度高达90%左右。
阿里对于“大数据”技术的应用,不仅实现了精确预估“用户行为”,更在业务模式上实现了颠覆式创新,即在交易产生之前便已然准备好商品和服务,在未来,则更有可能创造出“用户需求”,通过利用大数据技术深入挖掘用户需求,提前为其量身打造产品与服务,扩大了业务和企业边界。
以往对企业边界的讨论,都会参考威廉姆森和科斯的交易成本理论,按照科斯的理论,企业边界决定于交易成本与管理费用的对比。但是在互联网时代,一个企业的业务类型和企业边界,似乎更决定于数据能够流转到和真正起效的边界。那么对P2P行业而言,大数据又能从何种角度帮助P2P公司进行“开疆扩土”呢?
首先,在信审风控方面,互联网大数据技术让信审流程的准确性,高效性,透明度都得到了极大提升。作为信息交流的平台,对借款人资格的审核和把关,也就是进行信用审核,是P2P平台的重要职责之一。P2P行业对借款人信息考察的维度主要包括个人基本信息、教育及技能信息、工作信息、资产信息以及信用信息等,随着借款人数量的增多,身份类型的丰富,变量也变得越来越多,这就要求平台具备持续搜集数据,高效处理数据,以及不断完善的信审模型的能力。
互联网大数据技术的进步,让P2P平台有能力通过互联网抓取更为丰富和精确的信息,用户在互联网上的社交行为信息,包括其在微博、微信、论坛的活跃程度,发言数量,都可以被采集并成为个人信用评估的重要参考,这种通过数据系统建立严密高效的信审模型,是以往的线下人工审核模式所无法企及的。
近期,宜信宜人贷推出了“极速模式”借款服务,通过对互联网大数据技术的准确把控,宜信宜人贷建立了一套高效运行的大数据信审系统,借款人通过“极速模式”提交借款申请,在10分钟内就能快速完成审核。宜信宜人贷“极速模式”刷新了业内借款服务的新水平,在借款服务领域实现了极大的突破。
不断分析和挖掘用户需求,是企业进行产品和服务创新的重要支撑,传统的线下调研模式,要耗费大量的人力物力,而通过大数据来积累和分析用户的习惯和偏好,按照用户的实际需求对产品和服务进行改进和优化,能够将生产方与用户紧密联系起来。数据将产品和服务背后的用户变得生动鲜活,用户在哪里?喜欢什么?需要什么?对P2P行业而言,在业务高度同质化的现状下,不断寻找业务创新点显得尤为重要,显然,通过大数据技术的协助,P2P公司能够得到用户的即时反馈,从而不断激发对于产品和服务的创新思考。
另一方面,P2P行业目前在垂直领域的竞争还处于“蓝海”阶段,如宜信宜人贷针对程序员群体的借款服务“码上贷”,等针对细分人群定制的服务,还尚不算多,针对细分人群的个性化服务将成为未来行业的发展趋势。通过大数据技术对人群特征和需求进行搜集、描写和归纳,能够让P2P平台更快找准产品和服务定位,从而丰富业务种类,从而扩大公司边界。
更创新的商务模式,更高效的业务流程,更具前瞻性和个性的产品和服务永远是所有企业的追求,P2P行业的发展也依托于每一家平台对自身产品和服务的不断创新,以及对于行业内涵的不断扩展,如何在快速变化的时代,找到自己的位置,在站稳脚跟的基础上稳健扩张企业边界,是每一个P2P平台都应该思考的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13