
大数据下,传统媒体的危机_数据分析师考试
媒体是一个特殊的产业,它似乎总是走在时代的前沿,它们会发现、揭示、监督,也会摇旗呐喊。但是作为媒体从业者,我们又有多少人在扮演着这些变化的参与者,而非旁观者的心态。我们在传递信息和知识,但我们却很少思考这些信息和知识可能会对我们的影响。我们似乎在秉承着以不变应万变的思路,但是因着媒体也面临着销售压力,所以我们会常常在谁给我们钱,以及谁才是我们真正收入来源者中间摇摆。媒体人很困惑,也很挣扎。虽然我们会玩那些最时髦,但是只是为了附庸风雅。我们会说那些最流行的,只是因为我们是媒体。读者和网友们喜欢免费的信息,但他们也在撇弃那些放水的免费信息。如何尊重,并和媒体受众进行互动,将是有价值媒体内容的来源,也会带来真正媒体品牌的建立。
最近一直在接触大数据的相关资料,非常清楚大数据时代会如互联网一样势不可挡。同样,媒体除了宣传和提醒之外,也将身不由己地进入大数据时代。那么大数据对现代媒体产业会带来怎样的影响呢?
首先看看媒体的收入来源,从目前各类媒体(包括电视、杂志、报纸或者户外、网络)来看,绝大多数的媒体收入是广告。在一个竞争惨烈的市场中,企业的营销人员需要通过广告来建立、影响和拓展,客户对其品牌的认知。在2011年,全球在品牌投入上费用达到5000亿美元,当然,这个数字还不包括在线媒体的投入。即便在2012年,据有关信息显示,在线媒体的品牌投入也只有10%,但是这个趋势是在增长中。
再者,我们看看媒体的演变。媒体的演变已经很多年了,从单向的信息传播,到今天的社交媒体涌现出来的多维传播。人们的阅读方式和获取信息的方式都在发生变化,今天我的很多朋友是通过每天定点的刷微博来获得信息,当然在获得的时候,他们也在分享信息。每个人都是信息的载体和获取者。因着移动互联的便捷,越来越多的,有购买力的人开始花大量的时间沉浸在社交媒体上,他们也为此乐此不彼。可以想象,不久的将来,媒体的内容来源,以及媒体的交互形式将越来越多样化,社会化媒体已经风头渐进。传统媒体若没有与受众的交互,将只是鸣的锣和响的跋,毫无乐感可言。事实上,今天很多媒体也只是以每年的销售额来定义每年的目标,他们并不真正理解自己定位的人群,更别谈和自己的目标读者一起成长。
接下来我们需要看看企业市场人员为何在媒体投放?因为市场竞争激烈,品牌的影响收到挑战,人们希望借助媒体在目标人群中的影响力,而对其目标客户带来影响。所以对于那些有精准定位的媒体,又能在目标人群确实带来影响的媒体,会得到更多的市场人员青睐。因为在这些媒体的投放是得到的正向反馈,也会对他们的市场活动产生积极的影响。现在,几乎很多企业的市场人员都会对其投放的媒体进行评估,这种评估形式是多种多样的。对于传统媒体而言,这种评估历经很多年,相对评估模式比较单一,也能被大多数市场人员所接受。对于一些在线媒体的评估,现在的评估方法也是搜索、广告位的转化率等。不过,这些方式都只是得到客户的行为结果,而对于品牌建立的有效性,以及长久性,还是缺乏真实的体认。企业的市场人员依然有挥之不去的苦楚。
那么,为什么社交媒体虽有众人欢呼,却依然无法登堂入室呢?关键是企业的市场人员尚未找到评估社交媒体的好模式。但是大数据的出现,这样的状况将发生质的改变。因为大数据最终将让市场人员可以定义、评测和管理那些对他们品牌产生积极影响的部分。Hadoop, Cassandra, Mahout 和Pig等技术,伴随着一些语义分析软件、语言处理软件、机器认知软件、集群分析等,可以揭示出在线市场行为的真实结果。市场人员对社交媒体的看法将出现颠覆。随着实现大数据的成本越来越低,市场人员完全可以符合CEO、CFO和COO的话语来描述品牌在市场中的影响。通过大数据分析产生的洞察力也可以会反过来支撑市场活动来帮助品牌参与行为真正地成规模。可以预见,随着大数据的出现,企业市场人员对促进品牌参与规模的市场行为会发生基本的转移。品牌营销的市场将从通过大众传播在人们中建立品牌进行品牌沟通,到通过大量的交流者之间人们的交流,让品牌的世界得到创建、发展和扩大。社交媒体不仅会提供企业市场人员一种广告模式,也是真正规模化参与的能力。
大数据让社交媒体的价值被重新定位,同样企业市场人员也会重新评估自己在媒体上的投入分配。如果按照ROI的考量,以及未来的变化,今天的传统媒体需要根据技术的发展,重新定位和调整自己,让自己可以随着市场规模的扩大,而有更多新生,而非走向没落,自己成为自己的掘墓者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01