
未来电力的底线:大数据和物联网_数据分析师考试
如今,大数据正在不断拓展和扩大。据科学日报2013年的报道,全世界范围内所有数据的90%都是在过去两年中产生的。凡尔纳环球公司技术服务总监豪尔赫-巴尔塞尔斯指出,全球各地有25亿个互联网用户,在美国就有大约2.5亿个用户,特别是在过去的十年,用户的数量和水平呈现爆炸式增长。
从我们的Fitbits到手机摄像头,所有连接到互联网的各种类型的设备数量庞大,这些设备所产生的数据和未来的潜力导致计算和存储的需求呈指数增加。
大数据和物联网将如何影响数据中心?这是巴尔塞尔斯在将要召开的数据中心全球会议和博览会上演讲的主题。本次会议将包括许多专题会议,将会涉及数据中心的管理者和经营者面对的问题,以及数据中心的新技术。
大量的计算和存储需求产生更多的电力需求
巴尔塞尔斯说,他说其演讲主题重点是围绕数据中心的管理者和经营者所问的问题。比如“我们现在的电力基础设施能否处理所有产生的数据呢?我们能提供足够的电力吗?”。这还将引出了下一个问题:“你知道你的数据中心现在获得的电力,那么在5年或10年或15年以后呢,那时该如何应对?“
为了支持计算和存储今天的需求,“我们的数据中心需要质量可靠、高效节能的,采用可再生能源的充足电力。”他说。
不断增长的数据需求导致更大的电力需求和成本。凡尔纳全球公司位于冰岛凯夫拉维克的数据中心,已经建立了围绕可再生能源接入,可靠和具有成本效益的电源策略。探讨电力因素对数据中心影响,巴尔塞尔斯对此具有独特的视角。
电力的底线
巴尔塞尔斯表示,从财务的角度来看电力是很重要的。当数据中心管理者展望未来计划的成本,在如何计算电力定价时,却不知道未来会发生什么。
电力成本在今天的数据中心设施的位置产生巨大的影响。当客户着眼于市场的发展趋势时,其共同点就是“电力的价格”。巴尔塞尔斯说。
需求改变位置
“你看目前人们不在大都市地区建设新的数据中心。在过去的十年中,数据中心都尽量远离人口中心,向偏远地区地区发展。比如美国西北太平洋地区的华盛顿州、俄勒冈、甚至美国犹他州,”他说。“而全球数据中心位于北欧地区,包括冰岛。”
他举例说,Facebook在瑞典建设和数据中心,其电网是超级可靠的。而谷歌公司在芬兰建设的数据中心,从2015年开始,其电力来自可再生能源。(根据此前DCK的报道:谷歌公司在芬兰的哈米纳数据中心将在2015年主要采用风能发风,谷歌公司与一个陆上风电场供电公司签署了补充协议,因此该数据中心将采用100%的可再生能源发电。)
这种供电可靠性在美国当前却不可用。“例如,海湾地区的电力并不是持续的。其可靠性不高。”巴尔塞尔斯说。
北方气候的另一个好处是较低的散热需求。“在数据中心的总体成本中,冷却成本占到发电成本的30%到40%。”他说,“数据中心正在寻找那些终年有凉爽的气候的地点。”这减少了降低服务器的进气温度所需要产生的冷空气(无论是通过传统的冷却方式,或通过蒸发冷却)。
实用的可靠性
我们日前依赖的全天候的电力基础设施并不是都那么可靠。巴尔塞尔斯说人们往往很快忘记供电可靠性的问题。他引用了桑迪飓风和2003年美国东北电网导致大面积停电的事例。
“2003年的事故导致5000万人受灾。我们这么快就忘记了,”他说。“电力的可靠性是一个让人关注的问题,不只是在美国,在全世界也是如此。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19