
物联网时代产生的大数据用来干什么_数据分析师考试
据悉,包括健身穿戴设备、智能手表、智能眼镜,以及用来跟踪医疗仪器的远程传感设备在内的联网设备市场在未来几年内将得到快速的发展。市场研究公司Gartner预测,到2020年,物联网的设备和装置将达到260亿台,这其中还不包括个人电脑、平板电脑和智能手机。
有如此多的传感器来收集数据,这些数据包括设备的状态、周围的环境,以及人类的行为等等,企业可以利用这些数据信息获取利益。但是,问题也随之而来:利用这些数据信息究竟能做些什么?如何高效地处理这些数据,并尽可能地以一种最明智的方式来利用这些数据?
对于企业,他们正在意识到光收集到大量的数据是远远不够的,而且就数据本身来说,企业对它的兴趣点也是很小的。市场研究公司IDC的分析师Vernon Turner说:“数据收集完成后,如果不做任何分析、预测的话,它只是一种静止的状态,不能带来任何价值。”
一些近期发生在消费者市场中的案例就证明了这一点。例如,一款健身的可穿戴设备,它的功能只是告诉用户每天走了多少步路。然而,如果将这款可穿戴设备同其他的医疗数据连接起来,那么它的价值将会更大。在这种情况下,通过相关的应用,用户就可以知道他的高血压的症状或许和缺乏运动有关。或者,这款健身设备可以识别出用户在周末时候的运动量比较少,那么它就会发送消息提醒用户适当地多进行一些运动。
SunPower app
美国SunPower公司的一名员工指出,使用该公司集成太阳能板屋顶的用户可以利用该公司专门开发的应用检查家庭每天、每周、每月的能源生产和使用情况。
美国SunPower公司的一名员工指出,使用该公司集成太阳能板屋顶的用户可以利用该公司专门开发的应用检查家庭每天、每周、每月的能源生产和使用情况。
这种情况对于企业来说也同样如此,企业可以收集其所专注领域产品的详细信息,并把这些信息同其他来源的数据结合到一起,然后帮助企业做出明智的商业决策。
Avalon咨询有限责任公司语义技术的首席布道者Kurt Cagle说:“现在人们的思想逐渐倾向于:‘你的公司能够世界带来哪些改变?而不只是涉及消费者自身的利益,这是一个很大的转变。” Avalon咨询公司是一家帮助商业组织、机构管理物联网的企业。
Cagle表示,传统上,企业通常会使用类似于商业智能(BI)的软件来查看公司内部活动或运作产生的数据。但是,这些企业如果再加上一些关于周围环境或本地事件的公共数据,或者是同一领域其他公司的传感器中产生的数据的话,一定能够给企业带来更多、更大的价值。
但是,事实表明,要收集到所有的这些数据信息很多时候是一件非常艰难的事,因为这些数据的形式都不尽相同。目前,许多企业都已经朝着正确的方向迈进,但是构建完整的、精妙的解决方案的企业并不多;即便一些企业用类似的解决方案,他们也仍然需要不断的修正、检验以使其达到良好的状态。
学会整合
IDC公司的Turner说:“我们看到已经有无数的企业经历了实验阶段,开始部署传感器,并收集数据。但是,大部分的企业并没有一个关于数据收集的完整的解决方案。而利用数据为企业带来利益,这在实际的实施和部署过程中是非常复杂的。”
企业需要后端基础设施的支撑,以帮助企业收集各方来源的数据,并对这些数据进行分析,让收集来的数据发挥它应有的价值。然后,企业还需要仪表板和虚拟化技术来让企业的业务人员懂得这些数据的意义,以便基于这些数据信息作出明智的决策。
Daikin Applied就是这样一家公司,通过合作伙伴的帮助,该公司已经部署了一套精密的软硬件产品用来收集并分析了4000多个不同的有关其商业化的屋顶供热和空调单元的数据点。这套由英特尔公司设计的系统可实现与天气预报同步,使大厦的管理人员能够根据天气预报提前调整好整座大厦的温度,并且可以让Daikin公司了解到某个调节能源供应的部件可能会出现问题,这样Daikin公司就可以提前派遣一个维修机器的技术人员前去维护。
未来,利用这套系统Daikin公司将会分析一些本地化的应用基础设施上产生的重要数据,基于此可以帮助减少特定设备部件的能源输出和损耗。Daikin Applied公司的执行运营副总裁Kevin Facinelli说:“目前,应用基础设施这方面的工作还处在初期的准备阶段。” Daikin Applied公司是日本Daikin工业的一部分,Daikin工业是世界上最大的HVAC制造商。
要完成这项工作的实施和部署,硬件扮演了一个非常重要的角色。该系统的启动网关是基于英特尔Quark SoC芯片,运行了风河的操作系统,安全软件使用的是迈克菲的软件产品。
Facinelli指出:“我们利用SoC就可以完美地传输所有的数据,而不是只通过云来传输。” Facinelli的这种说法就意味其系统中配置的基于英特尔芯片的网关将部署到Daikin公司未来的所有屋顶系统中去,用来传输重要数据,这就像是改变了部件的状态一样,而不是仅仅输出一行行“系统正常”的提示信号。一些现场的处理工作减少了数据需要传输的容量,Daikin公司主要采用了数据流量连接的方式,这有助于减少其后端基础设施的数据存储负载。
同时,Daikin公司使用功率计来检测每个单元中的能源供应情况。通过网络,这个功率计可以将能源信号的相关数据传输到英特尔的云上,并在这个云上分析这些数据以便决定HVAC系统中每个组件,如风扇或制冷压缩机实际的能源使用率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10