
大数据时代亟待补齐法律短板_数据分析师考试
大数据时代也要求我们从法律体系、组织管理、产业方向、技术应用等多个层面构建协同联动的数据安全保障体系
2014年被看作是大数据(Big Data)分析应用的落地年,各个行业都开始尝试使用大数据技术。但与此同时,近年来频繁上演的信息泄露事件,则为人们敲响安全警钟。专家提醒,大数据时代,首先需要为数据筑好“安全围栏”。
作为时下最火热的IT行业词汇之一,大数据近年来成为各界关注的一大热点。一方面,网民数量不断增加;另一方面,以物联网和智能移动终端等为代表的网络设备数量飞速增长,使得人均网络接入带宽和流量也迅速提升。在大数据时代,每个人都是数据的使用者和贡献者。人们一边享受着基于移动通信技术和数据服务带来的快捷、高效,同时也笼罩在“个人信息泄露无处不在,人人‘裸奔’”的风险之中。在经济利益的驱动下,围绕个人信息采集、加工、开发、销售的庞大数据产业链在我国悄然形成。研究表明,我国互联网个人信息安全的灰色产业链规模已达近百亿,有众多黑客、广告商、中介及诈骗团伙从中牟取暴利。究其原因,是法律没有堵住泄密渠道的后门。正如一篇报道所言,我们个人信息的商业价值被发掘到极致,“从政府部门、电信运营商等信息掌握者,到数据平台和中间商等非法中介,再到非法调查公司,本该属于我们的信息,成为某些人牟利的工具。”
大数据对传统数据安全提出了新的挑战。以往我们的数据安全解决方案比如数据泄密防护,对象是局部的、受限的、确定的,而大数据时代,也许那些原本毫不起眼甚至毫无价值的数据,因其积聚从量变到质变,也必须要成为受保护对象。一项“谁来保护个人信息安全”的调查显示,90%的人“遭遇个人信息泄露”,89%的人“已不堪个人信息泄露之扰”。司法案例还表明,不少侵犯人权的犯罪行为及诈骗犯罪与个人信息的泄露有关。工信部“公众个人信息保护意识调研”显示,个人信息泄露已成为社会公害,超过60%的调查对象遇到过个人信息泄露、被盗用等问题,90%收到过垃圾短信或电话推销,13%以上的人遭遇过个人信息被冒用或公开。
大数据时代要用大数据的方法来进行数据保护。大数据时代针对个人信息的采集日趋便捷和全面,在信息安全保护方面,国家应该有组织、有计划地围绕大数据安全进行科技攻关,包括网络层面的安全解决方案,也包括应用层面的用户信息保护机制的架构等。当然,大数据时代也要求我们从法律体系、组织管理、产业方向、技术应用等多个层面构建协同联动的数据安全保障体系,以减少大数据时代信息安全的系统性风险。从国外的实践看,不少国家都通过立法保护个人信息安全。
针对当前严峻的信息泄密现状,增强数据安全保护已成为社会共识。短期内,如果无法从根本上改变互联网操作系统、芯片、核心技术等来自国外的事实,可采取“围栏式保护”的策略,在现有的互联网系统外围形成一层防护“围栏”,把威胁和风险框定在可防可控的范围内。一是如众人科技董事长谈剑峰所说的“围栏式密码保护”的策略,运用基于“国密算法”的密码技术把威胁和风险框定在可防可控的范围内。二是通过法律补漏,给信息安全托底。譬如,制定统一适用的公民信息安全保护法,确立公民个人信息安全保护的基本框架。又如,提高违法违规成本,加强问责和处罚力度。即在立法赋予公民救济信息泄露法律途径的基础上,提高出售或者非法提供给他人信息,以及窃取或者以其他方法非法获取上述信息的处罚力度,即便是单位犯罪的,其直接负责的主管人员和其他直接责任人员,也应当依法判刑,而不应仅判处罚金。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19