京公网安备 11010802034615号
经营许可证编号:京B2-20210330
美媒解读大数据:赚钱机会多亏钱风险大_数据分析师考试
谁将从大数据中获益,以及如何利用大数据获益等这些事关大数据未来发展的问题,很多人却对此知之甚少。
7月31日电(刘世东)大数据是当下最受关注的流行词之一,有时甚至到了被滥用的地步。然而,谁将从大数据中获益,以及如何利用大数据获益等这些事关大数据未来发展的问题,很多人却对此知之甚少。美国《连线》杂志网站日前刊文对这一问题进行了探讨,指出无论是投行还是传统制造业都可以通过大数据赚钱,但在运营大数据项目时无疑也面临着诸多风险。
公司如何通过大数据赚钱
大数据这一新兴的技术可以被用来更精准的剖析股票市场和供应链等复杂系统。投行成为最早一批应用大数据分析的行业之一,这一点都不令人意外。毕竟,那些以赚钱为业务的管理者通常更乐于利用技术去节省和创造财富。
在投行的日常业务中,为了对投资机会或股票购买进行精准的推荐,有新闻简报,财务报表等大量文档需要处理。如果人工进行处理,工作量过于庞大。因此投行分析师们往往会简化他们的分析模型的假设前提,并使用电子表格来完成绝大部分工作。大数据技术可以处理巨量信息,这可以使投行减少(因简化分析)所面临的风险,并做出更佳的分析和预测。
通过大数据平台,股票经纪人和投资经理们可以处理巨量非系统性的信息,以确定哪些公司最值得投资。非系统性公共信息,如公司新闻,产品评论,供应商数据,价目单变化,可以整合为“大数据”统一来处理,建立起数学模型,帮助经纪人决定买入或售出哪些股票。
有些利用大数据进行投资预测的企业,往往通过云平台来削减先期成本,先从少量的服务器开始,在获益后,逐步提高投入。例如,一位数量分析师从一家大型投行辞职后,在不到半年的时间内,使用非常有限的投入,便创立了一个已实现盈利的大数据交易系统。
即便在传统制造业领域,大数据也可以提升预测能力。欧洲某大型汽车制造商,建立了一个分析钢材交易成本的内部系统,并借此确定最佳时机,以更优价格买入原材料。这个系统是基于开源Java架构Hadoop创建的,整合了多个供应商的共计15Tb(Terabyte,万亿字节或太字节)的数据,在两年内为该公司节省了1600万美元。
这一项目之所以能成功主要有两个原因:公司有足够的信息为所有供应商建模;该项目节省的成本超过了实施这个项目的费用。
公司为何因为大数据亏钱
然而,并不是所有大数据项目都会这样成功。有时公司在大数据项目上也会亏钱,失败概率和成功的概率相差无几。大数据项目失败的早期征兆各不相同,最常见的问题有:
起步太高:大数据并不需要一笔巨大的预算,如果你怀着巨大的投入将带来巨大回报的预期开启一个大数据项目,那往往会产生问题。在开启项目前,明智的做法是,在小范围内测试对(大数据)技术有限的投入是否真能带来预期的收益。如果测试的结果是肯定的,一个项目随后总是可以扩大规模,并达到可以带来更大收益的规模经济。
低估人力投入:在开始实施一个大数据系统前,问自己一个简单的问题:这个项目在没有持续的人力支持的情况下是否可以运作?如果答案是“不可以”,那么停止该项目。创建一个无法在有利润的情况下维持的项目,往往意味着数百万的损失。
试图突破自然语言处理的限制:大数据有个经常被赞扬的功能是,利用“自然语言处理”(NLP),将众多领域的大量数据处理成可读性强的叙述性文字。这一想法确实很令人兴奋,但对于那些想要对此进行尝试的公司来说,实际情况往往不如人意。“自然语言处理”如今仍存在许多重大限制,这主要是因为人工智能还不够先进--而且在10年内,这一情况可能不会改变。
现代大数据具备节约成本的巨大潜力,在过去,这种有如魔法般的潜力会令数据处理者感到惊奇。但是,在投入时间和资源到大数据项目之前,首先要确认你的项目是有钱可赚的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16