京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何创建用户模型:问卷调查与数据分析(2)_数据分析师考试
二、数据处理 数据的常规处理
对于刚才得到的数据,可以进行常规的处理。即求出平均值或者份额进行相应比较分析,所得到的结果如下。
对于样本量为10的上述调查结果经计算,细心护理型占50%,粗放型30%,异常数据20%。
变量性问题平均值:
对于各个角色均值数据如下:
从上述数据结论可知,对呀B1-B4问题,两个用户角色观点相差不大。但是对于B5(产品交互)问题粗放型用户比细心护理型用户更为重视。
经过对建议性问题分析结果可以得到如下图表:
由此可得出结论,细心护理型用户对email的要去较为强烈;粗放型的用户倾向与写信的方式。对于添加的服务项,这两种角色均有需求。
综上所述,我们只是举了一个非常非常2b又简单的例子来说明构建用户模型的方法,实验的样本量也很小。这个简单的例子可以说明基本方法,要真正应用到自己的case中,还需要认真研究分析。
多元回归方法分析用户模型
对于数学好的童鞋,可以给出一种多元回归统计的方法来分析我们得到的数据。这里写的并不详细,也没听提供假设检验,望高手多多指点交流。我们仅用多元回归方法来分析变量性问题的结果。
我们的例子提出了5个变量性问题,所以要回归的线性方程具有5个变量,形式如下:
Y=b0+b1x1+b2x2+b3x3+b4x4+b5x5
我们的目的就是要对b0、b1、b2…b5计算出估计量。
写成矩阵的形式为Y=BX
其中Y为综合满意度数据
使用MATLAB中的regress(y,x)可以对B进行多元回归,结果如下:
(这里没有进行假设检验等,大家可以自行完善)
>> y=load('C:\Users\ydbj0017\Desktop\y.txt')
y =
90
85
77
81
70
78
89
91
90
80
>> x=load('C:\Users\ydbj0017\Desktop\x.txt')
x =
1 80 95 79 78 67
1 87 66 60 89 78
1 97 77 87 69 90
1 88 98 65 75 68
1 78 83 63 73 76
1 73 75 88 80 95
1 78 98 63 66 97
1 77 74 87 66 69
1 90 88 67 87 78
1 88 78 67 79 60
>> regress(y,x)
ans = %这个就是估计矩阵B
51.4213 %b0
-0.0868 %b1
0.2210 %b2
0.1407 %b3
0.2041 %b4
-0.0671 %b5
b0为常数,对变量没有影响,剩余对应相应的变量问题。由此可见B2问题是全部用户对整体评价中权重最大的因素。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13