
工业互联网不是说说而已 GE砸十亿美元做大数据_数据分析师培训
对于一家工业企业来说,设备和技术是硬实力,但美国工业巨头通用电气公司(下称GE)却正在让自己变得越来越“软”。
7月14日,在北京798艺术区的一个展厅内,GE的工作人员向界面新闻记者展示了他们在工业互联网整体解决方案上的应用。
GE想让机器变得更有“智慧”。而要实现这一点,靠的是数据模型与数据分析。
例如在油气领域,长距离的管道运输总是存在安全隐患,油气运营商只能派人定期检修线路。但这不仅容易有工作疏漏,而且动辄上千公里的管道,要耗费的人力物力也不小。
GE的办法是,在油气管道中置入大量传感器,并让其随油气一起流动,从而能够感知管道内的流速、压强、温度等各项安全指标,并将数据实时传送到终端;接着,GE通过其自主研发的Predictivity软件,建立模型,然后对大量数据进行分析,如果数据超标,则立即发出预警。
“这样做的好处是,不仅可以提高管道设备的安全性,防范于未然,而且可以大幅降低人力等各项维护成本。” GE的一位工作人员说。
GE企业对外传播总监华春牧告诉界面新闻记者,在过去三年,哥伦比亚国家石油公司绵延1.5万英里的天然气管道,安装了GE的这套油气管道监测系统,将安全事故数量从38起下降为零,降低成本1.5亿美元,每年减少服务时间2万小时。
道达尔、BP等油气巨头也选用了GE的监测系统。不过,尚未有中国石油公司的尝试这一新模式。
根据GE的测算,中国目前铺设有8万公里油气管道,如果采用GE的管道监测方案被采用,每年将节省5亿美元的成本,并减少6.5万工作小时。
GE的数据监测分析过程是通过一个名为Predix的软件操作平台进行的。GE企业对外传播总监华春牧表示,该平台由GE与英特尔、思科、华为等多家企业联合开发,耗资十几亿美元。平台负责将各种工业资产设备和供应商相互连接并接入云端,并提供资产性能管理和运营优化服务。
华春牧称,该平台自去年开放,但仅针对AT&T、软银等部分企业,自今年起,将面向所有企业开放。届时各行各业的企业将通过该平台创建和开发自己的工业互联网应用。
作为全球工业互联网的倡导者,GE已在大数据上押下重注。华春牧告诉界面新闻记者,截至去年年底,GE已在大数据上投入了10亿美元。
在今年7月7日举行的“工业互联网中国峰会”上,GE董事长兼首席执行官杰夫•伊梅尔特称:“我们正在开启下一个新工业时代,全球工业通过硬件与软件的结合正在重新发现增长机遇。”
早在2012年,GE就已开始将目光瞄准工业互联网和大数据。彼时,GE提出,要依靠机器以及设备间的互联互通和分析软件,打造智能机器,实现人、机器和数据的无缝协作,甚至到2030年,要为全球GDP贡献15万亿美元。
这其中当然少不了中国。GE给界面新闻记者提供的一份材料显示,迄今为止,GE已在中国开展了12个工业互联网试点项目,逐步推动40多个大数据分析应用落地。
2014年3月,东方航空与GE签订了战略合作协议。GE工程师分析了东航过去三年500多架飞机、累计超过两百多万航班的全部飞行数据。分析得出的结果不仅有助于降低飞行风险,而且能够预测发动机涡轮叶片的损伤情况,从而降低维护成本和油耗。
在医疗领域,GE则推出了医院资产管理整体解决方案Asset Plus。将大型医疗设备从临床需求,到申请采购、采购完成、装机、后期使用,再到报修、报废、更替等全生命周期的情况,全部以数据形式实时汇入系统,进行资产优化管理和配置。
华春牧告诉界面新闻记者,以前病患在仁济医院进行CT检查,预约排队大概需要6-8周。2013年后,经过Asset Plus的合理管理与使用规划,平均等待时间降到一周左右。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19