京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据营销,三个关键Tips助力企业转型_数据分析师考试
在用户需求不断变化,信息快速更迭的趋势下,企业更需要通过大数据营销,实现对目标用户的精准定位,对目标人群进行大数据分析,深入挖掘用户的潜在需求,推陈出新,针对不同用户群体提供更加全面优质的个性化产品和服务。然而开展大数据营销需要重点把握哪些关键要领呢?如何真正多快好省地发挥出大数据营销的功效呢? Focussend结合在邮件营销领域近10年的丰富经验,为您总结了三个关键要素,助企业在大数据营销转型过程中事半功倍:
真实的数据信息
数据采集是大数据营销的基础。想要实施大数据营销,首先得掌握一定的真实数据,脱离了市场和用户的数据对于“大数据“只是一句空话。所以在”以用户为核心“的时代,必须掌握用户的多维度数据,并据此分析用户数据,挖掘用户需求。
邮件营销作为伴随着互联网的发展一起成长的营销手段,也越来越重视大数据的应用。对于邮件营销来说,简单的群发邮件早已被剔除出了其核心营销理念,邮件营销也需要对用户采集数据,收集用户的不同信息。许多网站上都有邮件订阅的表单入口,这也就是网站常用的采集用户邮箱地址的方法。
Focussend认识到用户数据对于邮件营销的巨大作用,利用再营销产品以及订阅表单服务为企业客户提供了新用户数据采集方式。可以实现企业多种方式采集数据的需求。同时,企业可以在这个Focussend平台上接触到不同的用户,及时采集和更新用户数据和市场信息,保证企业大数据可以顺利开展。
大数据营销不再像之前以经验销售、关系销售为主导,而是要以实实在在的数据来说话,要真正做到从市场的真实需求和用户体验出发。只有精确采集信息,才能准确把握市场,精准把握用户的真实需求。
精准的投放体系
精准投放是大数据营销实施过程的核心。精准投放是建立在真实有效的数据信息基础上。企业通过大数据营销是想获得更高的ROI,这也就要求企业对采集到的数据进行系统分析,对用户进行有效的细分,再根据市场信息和动向有效整合企业资源并及时开展企业活动,实现与其市场需求用户需求的精准匹配。
智能化邮件的发展与应用也是大数据营销的体现。智能化邮件也是基于用户的数据,分析、挖掘并及时发送相关的个性化邮件。智能化邮件也是一种差异化营销的方式,基于用户的数据分析,可以实现“千人千面“的邮件信息。每一封智能邮件,都有基于用户的基本数据,通过个性化的展现,让用户接收到高度相关的内容。Focussend再营销产品是邮件营销的补充和延伸,也是大数据营销的最佳体现之一。其可以围绕目标用户,实现多平台的企业信息和活动信息推送,同时挖掘潜在客户,有效实现用户转化。
通过大数据的精准投放,一方面解决用户需求,获得用户的好感,提升转化率和ROI以及提高用户忠诚度;另一方面企业通过大数据营销,可以有效提升品牌价值,不断扩大品牌营销力度,保证企业的良性发展。
有效的数据管理
有效的数据管理是大数据营销效果的保障。数据管理贯穿于大数据营销的整个流程,从数据采集到营销实施,再到效果反馈,都需要渗入其中。大数据营销的基础就是数据,所以对于数据的把关需要相当慎重,对于采集到的数据应该科学地筛选,分级,归类等。现有的数据也需要加以利用,通过再营销的方式反复获得不同样本数据。大数据营销也要注重时效性,有效的数据管理可以保证数据及时更新,准确掌握用户信息。
邮箱就是用户数据输出和输入的平台,有着明确的数据传输流程。对于邮件营销服务商来说,需要对邮件数据高效的整合和利用,在数据管理上也更加准确有效。Focussend拥有强大的数据管理平台,最新推出的再营销广告计划正是基于其大数据平台,通过对用户数据精准分类,利用数据对用户进行多维度分析,从而实现广告的二次、三次的精准投放。
如今,在“互联网+”时代中,用户的需求越来越多样化,个性化,企业在借助大数据营销,实现对用户更加个性化的服务,满足用户需求。但是企业需要在利用大数据营销的同时保证自身产品和服务的质量。才能达到事半功倍的效果。在未来,Focussend将会推出更多利用大数据进行精准营销的EDM产品,助力企业在互联网时代顺利转型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13