
大数据营销,三个关键Tips助力企业转型_数据分析师考试
在用户需求不断变化,信息快速更迭的趋势下,企业更需要通过大数据营销,实现对目标用户的精准定位,对目标人群进行大数据分析,深入挖掘用户的潜在需求,推陈出新,针对不同用户群体提供更加全面优质的个性化产品和服务。然而开展大数据营销需要重点把握哪些关键要领呢?如何真正多快好省地发挥出大数据营销的功效呢? Focussend结合在邮件营销领域近10年的丰富经验,为您总结了三个关键要素,助企业在大数据营销转型过程中事半功倍:
真实的数据信息
数据采集是大数据营销的基础。想要实施大数据营销,首先得掌握一定的真实数据,脱离了市场和用户的数据对于“大数据“只是一句空话。所以在”以用户为核心“的时代,必须掌握用户的多维度数据,并据此分析用户数据,挖掘用户需求。
邮件营销作为伴随着互联网的发展一起成长的营销手段,也越来越重视大数据的应用。对于邮件营销来说,简单的群发邮件早已被剔除出了其核心营销理念,邮件营销也需要对用户采集数据,收集用户的不同信息。许多网站上都有邮件订阅的表单入口,这也就是网站常用的采集用户邮箱地址的方法。
Focussend认识到用户数据对于邮件营销的巨大作用,利用再营销产品以及订阅表单服务为企业客户提供了新用户数据采集方式。可以实现企业多种方式采集数据的需求。同时,企业可以在这个Focussend平台上接触到不同的用户,及时采集和更新用户数据和市场信息,保证企业大数据可以顺利开展。
大数据营销不再像之前以经验销售、关系销售为主导,而是要以实实在在的数据来说话,要真正做到从市场的真实需求和用户体验出发。只有精确采集信息,才能准确把握市场,精准把握用户的真实需求。
精准的投放体系
精准投放是大数据营销实施过程的核心。精准投放是建立在真实有效的数据信息基础上。企业通过大数据营销是想获得更高的ROI,这也就要求企业对采集到的数据进行系统分析,对用户进行有效的细分,再根据市场信息和动向有效整合企业资源并及时开展企业活动,实现与其市场需求用户需求的精准匹配。
智能化邮件的发展与应用也是大数据营销的体现。智能化邮件也是基于用户的数据,分析、挖掘并及时发送相关的个性化邮件。智能化邮件也是一种差异化营销的方式,基于用户的数据分析,可以实现“千人千面“的邮件信息。每一封智能邮件,都有基于用户的基本数据,通过个性化的展现,让用户接收到高度相关的内容。Focussend再营销产品是邮件营销的补充和延伸,也是大数据营销的最佳体现之一。其可以围绕目标用户,实现多平台的企业信息和活动信息推送,同时挖掘潜在客户,有效实现用户转化。
通过大数据的精准投放,一方面解决用户需求,获得用户的好感,提升转化率和ROI以及提高用户忠诚度;另一方面企业通过大数据营销,可以有效提升品牌价值,不断扩大品牌营销力度,保证企业的良性发展。
有效的数据管理
有效的数据管理是大数据营销效果的保障。数据管理贯穿于大数据营销的整个流程,从数据采集到营销实施,再到效果反馈,都需要渗入其中。大数据营销的基础就是数据,所以对于数据的把关需要相当慎重,对于采集到的数据应该科学地筛选,分级,归类等。现有的数据也需要加以利用,通过再营销的方式反复获得不同样本数据。大数据营销也要注重时效性,有效的数据管理可以保证数据及时更新,准确掌握用户信息。
邮箱就是用户数据输出和输入的平台,有着明确的数据传输流程。对于邮件营销服务商来说,需要对邮件数据高效的整合和利用,在数据管理上也更加准确有效。Focussend拥有强大的数据管理平台,最新推出的再营销广告计划正是基于其大数据平台,通过对用户数据精准分类,利用数据对用户进行多维度分析,从而实现广告的二次、三次的精准投放。
如今,在“互联网+”时代中,用户的需求越来越多样化,个性化,企业在借助大数据营销,实现对用户更加个性化的服务,满足用户需求。但是企业需要在利用大数据营销的同时保证自身产品和服务的质量。才能达到事半功倍的效果。在未来,Focussend将会推出更多利用大数据进行精准营销的EDM产品,助力企业在互联网时代顺利转型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28