
大数据如何颠覆制造业_数据分析师考试
通过寻找决定过程效益的核心因素,大数据与在其上进行的高级分析如何厘清制造中的价值链,然后帮助管理人员采取行动,以便对制造过程进行持续改进。下面是关于大数据如何颠覆制造过程的10条途径:
在生物制药的生产流程中,制造商通常需要对超过200种以上的变量进行监视,以便确保原料成分的纯净度,同时确保生产出的药品符合标准。让生物制药生产过程充满挑战的因素之一是:产量会在50%至100%之间变化,而且还无法马上辨别出原因。而使用高级分析,制造商能够对9个最能够影响产量变化的变量进行追踪。通过上述手段的帮助,他们将疫苗的产量提高了50%,每年在单一疫苗品种上节省的费用就达到500万至1000万美元。
工业4.0是由德国政府提出,旨在通过发展智能工厂,促进制造行业自动化。根据供应商、客户、有效产能以及费用的相关约束,大数据已经被用在优化生产进度方面。那些存在高度管制的行业里的制造业价值链上的厂商得益于德国供应商和制造商的帮助,正在大踏步迈向工业4.0。同时,以此为契机,这些厂商的各个部门能够充分发挥各自功能,而大数据和高级分析对于取得成功来说至关重要。
分别是:更好的预测产品需求并调整产能(46%),跨多重指标理解工厂绩效(45%)以及更快地为消费者提供服务与支持(39%)。上述数据是根据“LNS研究与MESA国际”的近期调查得出的。
对一个由DMAIC驱动的改进计划的工作过程取得更加深入的理解,同时就该计划如何对制造绩效的所有其他领域造成的影响进行深入领会。与以往相比,这一领域的发展有望促使生产流程转向更加面向消费者驱动的方向。
通过对大数据和高级分析的应用,制造商能够实时查看产品质量和配送准确度,对如何依据时间紧迫性在不同供应商之间分配订单生产任务进行权衡。对产品品质的管控优先于发货进度。
通过在生产中心的所有设备上配备传感器,运营经理能够立即了解每一台设备的状况。通过高级分析,每台设备及其操作者的工况、绩效以及技能差异能够得以体现。对于改进生产中心的工作流程来说,这些数据非常重要。
对于拥有许多复杂产品型号的制造商来说,定制产品或者以销定产的产品能够带来更高的毛利率,但是在生产过程没有被合理规划的情形下,同样可能导致生产费用的急剧上升。运用高级分析,制造商能够计算出合理的生产计划,以便在生产上述定制或以销定产的产品时,对目前的生产计划产生最小程度的影响,进而将规划分析具体到设备运行计划、人员以及店面级别。
对于制造商来说,是时候针对产品质量和合规性给予更具战略性的眼光了。麦肯锡的文章给出了数个应用大数据和分析的制造商的例子,指出如何通过大数据以及分析手段,针对那些与产品质量管理和合规性最相关的参数进行分析,以便帮助管理人员获得更加深刻的理解。这些参数中的大部分是企业层面的,而不仅仅存在于产品质量管理或者合规部门。
通过大数据和高级分析,制造商的财务状况和每日生产活动能够直接联系起来。通过对每台生产设备进行追踪,管理者能够了解工厂的运转效率,生产规划负责人和高级管理人员能够更好地调整生产规模。
制造商开始生产更加复杂的产品,需要在产品中配备板上传感器并通过操作系统加以管理。这些传感器能够收集产品运行情况的数据,并且根据情况发出预防性维护的通知。通过大数据和高级分析,这些维护建议能够在第一时间发出,消费者也就能够从中获得更多的价值。目前,通用电气在它的引擎和钻井平台上使用了类似的手法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19