
互联网+时代 "大数据"成为"大泄露"_数据分析师考试
2014年底,Verizon发布了《2014年度数据泄露调查报告》,报告中回顾了63737起赛博安全事件和1367起已经确认的数据泄漏事件。单纯的2014年就发生了春运第一天12306爆用户信息泄露漏洞、支付宝前员工贩卖20G用户资料、汉庭2000万开房信息泄露、130万考研用户信息遭泄漏等敏感数据泄露事件。
我们不禁怀疑,在互联网+时代,谁能保障我们的隐私?有什么高科技可以帮助企业更全方位的保护自己的“大数据”吗?
当然有,一旦涉及到这种数据敏感的事情,必须要找生物识别技术啊。目前,主要四种生物识别解决方案可以帮助企业降低成本,提高效益。
1、物理安全控制
我们所熟知的个人身份识别的方式有很多种,例如:锁,密码,ID卡等,但是现在都已经过时了,他们不但让人没有安全感而且还需要很大一笔费用来维护。美国零售商协会公布60%的存货损失是由于员工盗窃导致的,仅在2013年就损失了330亿!显然,在行业内提高安全控制系统已经势在必行。
生物识别能够帮助企业多一层保护,特别是对一些重要的资产或基础设施进行保护,例如:办公楼,核心实施以及一些未经授权的区域。
2、人力资源管理
生物识别在企业中应用最普遍的方面就是人力资源管理系统,它是利用虹膜、指纹、静脉识别来进行追溯和考勤。美国Acuity公司曾做过一次市场报告,报告指出,截止到2008年,全球生物识别考勤设备的应用已经超过400万,这些设备的使用可以帮助防止员工无故翘班,简化流程,提高效率,这对于企业来说无疑是巨大的收益。最近一项研究表明,美国公司每年由于员工偷懒会失去近40亿美元。此外,行业研究已经明确表明,大多数企业至少会将总预算的50%用于薪酬和员工管理方面,特别是对于大型企业,例如工厂或工业区,他们的工人数量是成百上千的,自然成本也就高很多。
生物识别跟踪系统已经显现出明显的节约优势。正如报告中支出的,那些所采用生物识别系统的公司,他们已经节约了预算总额的5%。美国Crossland公司的IT经理说:“估计我们公司第一年就节省了850万美元。”
3、使用生物识别单点登录数据访问管理
生物识别单点登陆(SSO)作为一种安全的数据库访问方法,它需要用户提供自己的生物特征来替代密码或者PIN。一旦他们登陆,他们将获得进入所有系统的通行证,而不次需要每次提示重新登录。
利用生物识别特征认证的SSO能提供更强大的身份验证和更高的安全性。现在,内部数据盗窃已经不可避免,一项有来自美国,英国,德国,法国和加拿大参与者参与的调查表明,数据信息泄露36%是由于员工使用不当或者疏忽造成的结果,而25%是来自内部人员的蓄意攻击。
此外,世界范围内的企业都遭受着数据丢失的内患,一项调查结果显示,世界上大约3900家企业由于数据丢失而损失金额成本平均在66万美元到938万美元之间。不安全的身份管理,弱密码和个人数据访问的不当认证往往是大多数企业数据安全漏洞的根源所在。采用生物识别SSO将会给企业带来很多优势,例如:更多的股票收益,更强的反欺骗能力,更高的识别精度,易于管理以及节约成本。
4、生物识别数字化签约
数字化签约已经在那些需要合法授权交易的组织中非常的普遍,例如:电子交易,电子邮件签约和电子政务在当今已经是一个不断发展的新趋势。电子签约能够提供很多益处,但是它们仍需要不断的自我完善,因为黑客们也在不断升级,使得传统的密码和智能卡遭受被假冒和访问权限丢失的风险。试想一下,当攻击者诱骗受害者签订不利的条款合约,把那些包含隐私的邮件发给用户本身并不知晓的收件人时,会发生什么?
而生物识别数字签名技术将会帮助解决传统数字签名单一识别的问题,解决用户丢卡或忘记密码的烦恼。
综上,生物识别技术不紧能够保护用户额隐私,提供更安全可靠的保护措施,而且还能够帮助企业有效的管理员工,提高效率,节约成本,这已然成为当今社会企业发展的必然趋势。当然,2014发生在国内外的数据泄密事件高达1367起,这还是属于已经确认的,我们可以想象还有多少无从确认或者无法公开的事件,2015年是不是会出现更过的泄露事件?大数据本身是为了提升我们的用户体验,而不是泄露用户的隐私的,不要让我们的大数据成为“大泄露”!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04