
大数据精准营销降低电商APP新客成本_数据分析师考试
截至2015年6月,中国网民规模达6.68亿,互联网普及率为48.8%;手机网民规模达5.94亿,占比提升至88.9%。也就是说移动互联网时代已经全面到来。在移动互联网时代,决定公司成败的关键技术从信息技术(Information Technology)转向了数据处理技术(Data Technology),“人类正从IT时代走向DT时代”。
DT时代,大数据带来的增量与变量是企业关注的核心。在广义的电商领域,新客的获取成本就是决定增量和变量的一个重要指标。为方便探讨,比达咨询(BigData-Research)对电商APP新客的定义是:激活APP后一月内有购买行为的用户。
众所周知,电商主要的销售额来自老客,但是新客的增长是满足基数规模扩张、迅速拉升市场占有率的关键指标。目前大家熟知的电商平台,都是起于PC网络时期的,且都在做向移动互联网转型的战略布局,所以规模拓展依然是第一要务,也就是要不断地汲取新客,其中包括将PC老客转化为APP新客的过程。
PC互联网早期,新客的转化主要依赖传统的品牌广告,公交车、地铁、报纸上都充斥着各个互联网公司的广告。随着互联网规模的扩大、搜索技术的发展,新客的转化模式变成了品牌广告+精准投放,这个精准投放的精准度也经过了投在网站、投在网页、投在关键词的变迁。
进入移动互联网时代之后,开拓APP新客的模式在品牌广告+精准投放的基础上,新增加了精准营销----基于DT时代大数据分析的精准营销。这里的精准包括两个含义,一个是更精准地定位到潜在用户,另一个是将每一个新客的成本进一步精准化。
从2013年以来,新客成本在不断拉升。2013年前,据行业数据统计,获取一个新用户的成本是维护老用户成本的5~6倍。当时的情况是:大电商不赚钱因为流量越来越贵,小电商赚不到钱是因为没有流量;并且新客获取成本越来越高,新客转化难,用户活跃度偏低。 2014年,获取新客成本已经是维护老用户成本的6-8倍。到了2015年,由于有了大数据精准营销,新客成本有了一些变化。
(图:各类电商APP新客成本调研数据)
根据上图可以看出,APP新客成本的类别区分越来越细化,新客成本的价格不再是平均价,而是一个价格区间。这是因为各家针对新客的投放是立体的,即:品牌广告+精准投放+精准营销。图中标出的价格区间包含了不同平台的投放价格,高的数值来自传统广告模式,低的数值来自大数据精准运营。因此,只做广告投放的企业其新客成本就会比较高,附带的好处是品牌知名度会有所提升。大多数企业会将几种手段结合起来运作,比如会提前为营销节打广告,然后为营销节活动页面买流量,在营销节期间发红包促销以老带新或以甲业务带动乙业务。
对于图中价格跨度最大的票务旅游类APP来说,原因有以下两点:1、进入数据统计的票务旅游类网站不多;2、有长期依赖电视广告的企业。这也间接说明了这个领域竞争的激烈程度。另有第三方数据证明了在线旅游在2015年上半年的高速增长。根据最新的CNNIC报告,截至2015年6月底,手机预订机票、酒店、火车票或旅游度假产品的网民规模达到1.68亿,较2014年12月底增长3350万人,半年度增长率为25.0%。这是别的行业所没有的。
DT时代的精准营销,目前正处于高速成长时期,手段多样。企业在不断尝试,消费者也在逐步适应。比如消费者会投诉为啥老用户得到的促销红包就比新用户少;比如对于买了机票就给你专车接机券,有的用户觉得方便、有的用户就觉得是骚扰。以前,客户终身价值=顾客终身购买次数×客单价×利润率。今后,客户的社会关系、客户消费点评、带来的新客量等等指标,也会包含在客户终身价值里面。DT时代的精准营销,首要就是精算,企业要清楚在拉升新客的同时带来了多少营业额的转化,清楚钱都花在了哪里。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28