京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何走出“围墙”_数据分析师考试
大数据浪潮的扑面而来,使得对数据的认识和利用被提升到前所未有的高度。特别是对于占据九成份额,拥有最多大数据资源的政府部门,堪称“富矿”。
“政府手里最值钱是土地和数据,数据是可以反复利用的,政府数据一旦释放,所产生的价值要比土地高太多。”谈及政府数据的价值,贵阳大数据交易所总裁王叁寿告诉《中国电子报》记者说。
更重要的是,大数据时代,国家大力发展政务大数据,还在于其能够成为打通部门壁垒、提高行政效率、转变思维方式,是开启“智慧政府”之门的一把金钥匙。
然而就目前而言,政府数据仍然被束之高阁,无论是促进价值释放还是促进政府职能转型而言,都是全新课题。那么,躲在里面“睡觉”的政府大数据如何才能走出“围墙”呢?
政府自身意识很关键
一位市民出国旅游需要证明“我妈是我妈”,这让李克强总理在国务院常务会议上拍了桌子,反映出某些政府管理部门和企业在建设诚信体系方面理念落后和动作迟缓,而如果实现了大数据联网,完全可以由政府部门内部调取,不必让市民急断肠、跑断腿。
部分政府部门在对大数据开放上所持的消极态度在一定程度上阻碍了政府大数据价值的释放。在赛迪智库软件与信息服务业研究所所长安晖看来,大数据走出政府“围墙”的核心问题在于政府自身的意识。
“国外认为政府使用纳税人的钱获得的数据,就应该为纳税人所用,所以主导观念就是开放。而政府部门对于数据的态度是,除非需要,否则不开放。”安晖这样告诉《中国电子报》记者。
随着国家在部署运用大数据优化政府服务和监管、提高行政效能上的不断加强,地方政府对于开放数据的态度正在逐渐转变,步伐也在不断加快,越来越多的政府部门意识到“数据是一种财富”,北京、上海等全国多个地方政府均在一定程度上开放了政府数据。
王叁寿告诉《中国电子报》记者,地方政府的确在对于大数据开放态度上有积极转变,但他也同时指出,光有态度并不够。
因为这样的开放姿态可能掺有“水分”。一种情况是将政府部门数据交给自建的数据中心,实际上并没有做到完全地面向市场主体开放。另一种情况是开放数据的价值很少,低价值密度的数据无法被市场主体有效利用。
中关村大数据产业联盟秘书长赵国栋在接受《中国电子报》记者采访时表示,对于数据资产的重视所产生的一个副作用则是政府部门将数据据为己有,这涉及到政府部门的利益问题。政府部门只有改变观念,转变职能,才能打破这种垄断,真正做到数据开放并服务于市场主体。
大数据处理需要“富士康”
政府部门对于开放大数据上的“保守”有其现实原因,主要来自对于开放数据安全性的担忧。即便能够做到单一部门开放数据的安全级别分类和审核,但很难控制不同部门数据开放之后的交叉泄密,这成为政府部门对于开放大数据的顾忌所在。
赵国栋并不认同因为安全问题而拒绝大数据开放的做法,他认为大数据安全是个伪命题。“从宏观层面,国家有能力保护好数据安全。而对于政府部门,安全体现在使用中去维护,不能因为有风险而不去做,不能因噎废食。”赵国栋直言。
在王叁寿看来,政府开放大数据还是要在安全保障的前提下求发展,确保数据源的真实、可信是最为重要的。大数据的清洗和建模两个环节成为大数据走出政府围墙的关键,这又涉及对于数据的采集、汇总、脱敏、分析等多个流程,而目前国内在清洗、建模方面的人才较少。
“大数据的清洗、建模、分析属于劳动密集型工作,不管是中国也好,国外也好,在大数据清洗、建模、分析领域需要‘富士康式’的企业,进行数据清洗业务的标准化生产,为大量的数据交易提供支撑。”
我国正在积极推动加快建立政府信息采集、存储、公开、共享、使用、质量保障和安全管理的技术标准方面的工作。在近日国务院办公厅印发的《关于运用大数据加强对市场主体服务和监管的若干意见》中,明确工信部、国家标准委员会、国家发改委、质检总局、网信办、统计局等多部门建立大数据标准体系,研究制定有关大数据的基础标准、技术标准、应用标准和管理标准等工作,计划将于2020年前出台并实施。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05