
我们用“大数据”做空_数据分析师考试
不是标题党,确有其事,不过不是我们做空,是我们帮助客户做空,那还是我在律师事务所做专职律师时候的事。
大家如果对反垄断法有一定的了解的话,就知道如果两个(或以上)企业之间发生集中(比如兼并收购),且参与集中的企业达到一定的规模(比如营业额达到一定的标准),那么这个集中就必需先申报(比如在中国向商务部进行申报),待申报被批准后方能实施集中。反垄断申报的目的在于防止一个集中会破坏一个相关市场的竞争秩序,从而损害消费者的利益。举个例子,如果可口可乐和百事可乐集中合并为一个企业,那么这个集中就极有可能导致可乐市场的竞争秩序被扭曲和破坏——可乐市场的竞争因为两个主要竞争者的消逝而消逝了,那么可乐的价格就极有可能飙升,从而损害消费者的利益。
如果可口可乐和百事可乐要集中合并的话,那么这个集中合并一定得去相关市场的政府部门申报,与此同时就会有很多券商、对冲基金或者其他人来决定是否做多还是做空这两个公司的股票。如果这个集中被批准的可能性较大,那么做多这两个公司股票的基本面就大——虽然集中可能损害消费者利益,但对两个公司而言是利好,这两个公司的股价就会上涨,因此做多的赢面大。反言之,如果这个集中被拒绝的可能性较大,那么做空这两个公司股票的基本面就大——因为集中申报一旦被拒绝,那么参与集中的公司的股票就会下跌,因此做空的赢面大。当然我用这两个可乐巨头来举例可能太过典型而不具实际意义,因为它们的集中被否几乎就是板上钉钉的事。那我们就用一个实战例子来说事。不过这个例子还是与可口可乐有关。
2008年9月3日,可口可乐宣布计划以现金收购中国汇源果汁集团有限公司(01886.HK)。可口可乐公司建议收购要约为每股12.20港元,并等价收购已发行的可换股债券及期权。可口可乐在宣布之前已取得汇源三个股东签署的接受要约不可撤销承诺,三个股东共拥有汇源66%股份。如此项建议交易获得接纳, 可口可乐付出的对价约24亿美元。该交易若完成,将成为可口可乐到当时为止在中国金额最大的一笔收购交易,汇源果汁也将撤市。
上述消息宣布之后,汇源与可口可乐的股价均大幅上扬。但问题是可口可乐对汇源的收购属于中国反垄断法下应当予以申报的一次集中,该集中是否能得到商务部的批准成为这次交易的X因素,对此有对冲基金找到我们做分析,我们按照我们做此类业务的套路和方法收集了相关数据进行分析(至于是什么样的数据和什么样的分析方法我们在此就不说了)。不管怎样,我们最终的分析结果是商务部反垄断局将不会批准这次集中,幸运的是我们这次分析结果是正确的。相应地,听从我们的建议而做空的客户也就赚了钱。
7年前我们在做上述案例分析的时候,还没有所谓“大数据”或者“小数据”的概念。现在回过头来想想,我们当时(和现在)所做的无非也就是数据分析,当然了,所涉及的数据从总量上看也许不是那么地大,但是相对于具体项目而言已经足够大。当然,是不是一定可以把这些数据看成我们现而今所称的“大数据”也许值得商榷,我们以后另行撰文来讨论,这也是我在本文标题中把“大数据”加上引号的原因。不管怎样,考虑到商务部迄今为止在所有的 1000多件反垄断申报案件中只有2个未获申报,我们当时对概率如此之小的事件能够准确地预判还是令人值得骄傲的,这应当归功于我们收集数据的准确与分析的到位。
如果我们可以把上述成功做空看成是采用“大数据”所做的一个有效分析的话,那么“大数据”分析似乎具有以下几个特点,我们在这里就所谓的特点试图做一个归纳以达到抛砖引玉的目的:
- 大数据分析首先应当是商品。不管数据采集和分析的方法是怎样的,最后出来的产品应当有人化钱购买。没有商业价值的大数据或大数据分析产品是没有价值的,换言之是做不下去的。
-大数据分析产品的开发应当有针对性的客户。不同的客户对大数据分析产品的需求是不一样的。就拿法律行业的上述大数据为例,对大数据及大数据分析产品有直接需求的基本上是做涉外业务的律师事务所及国际大公司,所以上述大数据及大数据分析产品的工作语言基本上都是英语。
- 大数据分析的生命力在于它的准确性。以我们上述案件为例,可口可乐收购汇源被否,汇源股价在紧接着开盘的当天全天暴跌42%。而在这之前可口可乐天价收购汇源的消息曾刺激汇源股价狂飙近200倍。可口可乐在宣布收购汇源果汁之后,其在纽约证交所的股价曾一度出现强劲上升,但在后来的半年里股价下降了20%,这与其收购汇源失败不是没有关联的。可以想象如果我们当时的分析是不准确的,那么客户就得赔钱了。当然,我们这个案件的成功不能不说有一定的偶然性,那么大数据分析是不是有一定的容错?我相信是有的。如果大数据不会犯错,那其就等同于上帝了,但大数据的错误率太高,那么也就没有商业价值,甚至连娱乐价值也都没有了。
在文章最后问一个问题:用数据(不管是大还是小)分析出来的结论来做空算不算是恶意呢?也许这个问题有点“然并卵”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07