京公网安备 11010802034615号
经营许可证编号:京B2-20210330
今天凌晨4点,德国对巴西的世界杯本决赛给了所有人一个大大的惊叹号。德国7:1战胜巴西,让人瞠目,巴西如此惨败,实属难料。也许连谷歌的大数据预测也没有预测到7:1的悬殊差距。
在这种情况下,讨论用大数据精准预测世界可能稍显牵强,但是毕竟,大数据预测是趋势。
大数据发展到今天,虽然离完美预测还有一段距离,然而,不可否认,相信数据比相信直觉更加靠谱。抛开今天凌晨这场“大比分”的比赛不谈,谷歌、百度、微软等通过分析大数据对世界杯的前期预测准确的同样让人惊奇。
谷歌的云计算平台成功预测了世界杯16强比赛每场比赛的胜利者。据了解,谷歌使用来自实时体育比赛数据公司Opta Sports的数据,以及由BigQuery工程师乔丹·提加尼开发的实力排行榜系统,更考虑了观众热情程度数据,以计算出主队优势,从而预测赛果。此 外,谷歌使用这一系统来预测世界杯8强的比赛,结果也惊人地准确:巴西对哥伦比亚,巴西胜概率为71%;法国对德国,法国胜概率为69%;荷兰对哥斯达黎 加,荷兰胜概率为68%;阿根廷对比利时,阿根廷胜概率为81%。
事实上,对于预测结果,谷歌并不是唯一做出完美预测的公司,百度、微软必应也进行了预测,大家的共同点都在于是依据云数据系统的综合分析来做出预测。
随着大数据行业的发展,谷歌、亚马逊、阿里、百度、腾讯,都因为拥有大量的用户注册和运营信息,自然地成为大数据公司。各种数据的记录也许看起来是随机的,但是当这些数据由光速电脑进行分析之后,便会揭示出影像、模式、联系和趋势,不仅可以提高业务绩效,更改变生活。
谷歌、百度等搜索引擎不仅存储了搜索结果中出现的网络连接,还会储存用户搜索关键词的行为,它能够精准地记录下人们进行搜索行为的时间、内容和方式,在你意识到自己要找什么之前预测出你的意图。
去年春节期间,百度已经开始了对于春节人口流动趋势的预测;今年清明和五一,百度对全国各大景区、城市的人流热度做了预测,其针对2014年高考作 文命题方向的预测更是“命中”了全国18套考题中的12套。据了解,百度的“高考预测”还可以利用历史搜索数据、历年的录取分数、各批次省控线预测全国各 个大学的报考热度、难度,各种专业的报考趋势以及本省考生都对哪些专业、学校感兴趣等。百度CEO李彦宏表示,“对数据的挖掘整理只是大数据技术的初级阶 段。除了通过大数据分析规律、趋势,机器必须还要会自主思考才行。”
除了IT企业计划的疾病预测、房地产预测、就业预测、金融预测,我国疾控中心也计划运用大数据,提前确定一定规模的未知疾病,为疫情控制争取时间。
不过,从目前来看,大数据的分析预测能力还远未完善。2009年,甲型H1N1流感爆发的几周前,“谷歌流感趋势”预测了流感在美国境内的传播,其 分析结果甚至具体到特定的地区和州,并且非常及时,令公共卫生官员倍感震惊。不过,2013年,谷歌对于流感的预测与美国疾病控制中心汇总后的结果相比, 夸大了几乎一倍。
业界认为,未来“大数据的精准分析不仅有赖于数据资源的扩充,更要基于大数据引擎的发展进步。”据了解,IBM已推出大数据行业方案,英特尔入股了大数据初创企业Cloudera,还推出了基于Hidoop的“大数据引擎”。
专家:
数据协同和隐私问题待解
谷歌、IBM、甲骨文、SAP等企业在大数据领域进行了技术创新,越来越多的国外企业凭借技术优势和先行经验进军大数据市场。然而,我国大数据产业 发展仍然处于起步阶段。“每一次点击、触摸、短信、微信、微博、驾驶、飞行、通话、拍照、购买等都产生数据……虽然每天在产生大量数据,却没有显示出足够 的威力。”赛迪顾问分析师表示,“交通部门有车联网、物联网、路网监控、船联网、码头车站监控等地方的大数据,卫生部门拥有流感法定报告数据、全国流感样 病例哨点监测和病原学监测数据,公安部门有大量的视频监控数据,但政府部门几乎都没有大数据处理和挖掘技术。”
除了互联网公司,沃尔玛、中国移动等传统企业也掌握着大量用户数据,平台企业互相独立地应用数据淘金,各取所需,但数据的私密占有严重制约着大数据的广泛应用和融合发展。“大数据的协同可以实现智能路径规划、运力管理、流感预测、疫苗接种指导、安防追逃等。”
《大数据时代》一书中指出,“大数据本身探寻的是一种趋势,而非精准性,若要无限接近统计结果,必须让大数据与精细的传统统计方法互补,而非两者相互替代。”
此外,数据的隐私问题也仍然待解。谷歌斥巨资投入的癌症预测项目中,仅有4%的癌症患者参与到了临床试验数据库项目中,这也就意味着高达96%病患的医疗和综合体征信息难以被其他医疗机构或者医生轻易获悉。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23