
大数据顶尖职位必备的9项技能_数据分析师考试
在大数据商品化之前, 利用大数据分析工具和技术来取得竞争优势已不再是秘密。2015年, 如果你还在职场上寻找大数据的相关工作, 那么, 这里介绍的9种技能,将帮助你得到一个工作机会。
1. Apache Hadoop
Hadoop现在已经进入第二个10年发展期了, 但不可否认的是, Hadoop在2014年出现了井喷式发展, 由于Hadoop从测试集群向生产和软件供应商方向不断转移, 其越来越接近于分布式存储和处理机架构, 因此, 这一势头在2015年会更加猛烈。由于大数据平台的强大, Hadoop可能是一个挑剔的怪兽, 它需要熟悉的技术人员细心的照顾和喂养。掌握Hadoop最核心技术 (例如, HDFS, MapReduce, Flume, Oozie, Hive, Pig, HBase, and YARN) 的技术人员在职场上的需求将越来越大。
2. Apache Spark
如果说Hadoop在大数据世界中已广为人知, 那么Spark就是一匹黑马, 它所蕴含的原始潜力使Hadoop黯然失色。无论是否是Hadoop架构, 快速崛起的内存计算技术被认为是MapReduce风格分析框架更快和更简洁的替代方案。Spark最佳的定位应当是大数据技术族中重要的一个成员。 Spark仍然需要专业技术进行编程和运行, 这为知晓该技术的工程师提供了不错的工作机会。
3. NoSQL
在大数据的操作层面, 诸如 MongoDB 和 Couchbase 等分布式、可扩展的 NoSQL 数据库正在接管市场份额极为庞大的的 SQL 数据库, 例如 Oracle 和 IBM DB2。在 WEB 和移动 app 层面, NoSQL数据库常常被做为 Hadoop分析的数据源。在大数据领域, Hadoop 和 NoSQL 分别成为良性循环的两个端点。
人们习惯于对收集的数据进行挖掘,但是, 在当今大数据的世界里, 数据挖掘已经达到了一个全新的高度。机器学习成为去年大数据技术最热门的领域之一, 2015年顺理成章地成为它的突破之年。大数据将会使那些能够利用机器学习技术去构建和训练像分类、推荐和个性化系统等预测分析应用程序的人成为职场宠 儿, 取得就业市 场上的顶级薪金。
5. Statistical and Quantitative Analysis(统计和定量分析)
这就是大数据。如果你有定量推理背景和数学或统计学等方面的学位,那么你就成功了一半。此外,再加上一些使用统计工具经验,例如 R, SAS, Matlab, SPSS, 或者是 Stata, 你就能够锁定这些工作岗位啦。在过去,许多量化工程师都会选择在华尔街工作, 但由于大数据的快速发展, 现在各行各样都需要大量的具有定量分析背景的 极客。
6. SQL
以数据为中心的语言已有超过40年的历史了, 但是这种祖父级的语言在当前的大数据时代仍然具有生命力。尽管它难以应对大数据的挑战 (见上文NoSQL部分), 但是, 简化了的结构化语言使其在许多方面变得十分容易。同时应该感谢来自于Cloudera所发布的Impala等开源项目, SQL获得了新生, 成为下一代Hadoop规模的数据仓库的通用语言。
7. Data Visualization(数据可视化)
大数据可能不是那么容易理解, 但在某些情况下, 通过鲜活的数据吸引眼球仍然是不可替代的方法。你可以一直采用多元或逻辑回归分析方法解析数据, 但是, 有时候使用类似 Tableau 或 Qlikview 这样的可视化工具探索数据样本能够直观的告诉你所拥有的数据的形态, 甚至是发现那些能够改变你处理数据方法的一些隐蔽细节。当然,如果你长大后想成为数据艺术家, 那么, 精通一个甚至是更多的可视化工具就是必不可少的了。
8. General Purpose Programming Languages
在类似 Java, C, Python, 或 Scala 等通用语言中拥有编程应用经验能够使你相对于那些局限于分析技术的人更具有优势。根据 Wanted Analytics的统计, 招聘具有数据分析背景的“计算机编程”职位的数量增长了 337%。具有传统应用程序开发和新兴数据分析能力的人将会有极大的就业选择空间, 能够自由的在终端用户企业和大数据创业公司之间进行流动。
无论你在高级分析工具和技术方面有多大优势,自主思考能力仍然是无可替代 的。大数据处理工具会不可避免的进行演化发展,新技术会不断涌现并替代这里所列 出的技术。但是,如果你能出于本能的渴求新的知识,并且能够像猎犬一样发现问题 的解决方案,就会有大量的工作机会在等着你。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11