
数据挖掘中所需的概率论与数理统计知识(一)
一个月余前,在微博上感慨道,不知日后是否有无机会搞DM,微博上的朋友只看不发的围脖评论道:算法研究领域,那里要的是数学,你可以深入学习数学,将算法普及当兴趣。想想,甚合我意。自此,便从rickjin写的“正态分布的前世今生”开始研习数学。
如之前微博上所说,“今年5月接触DM,循序学习决策树.贝叶斯,SVM.KNN,感数学功底不足,遂补数学,从‘正态分布的前后今生’中感到数学史有趣,故买本微积分概念发展史读,在叹服前人伟大的创造之余,感微积分概念模糊,复习高等数学上册,完后学概率论与数理统计,感概道:微积分是概数统计基础,概数统计则是DM&ML之必修课。”包括读者相信也已经感觉到,我在写这个Top 10 Algorithms in Data Mining系列的时候,其中涉及到诸多的数学概念与基础知识(例如此篇SVM文章内诸多max.s.t.对偶.KKT条件.拉格朗日.松弛因子等问题则皆属于数学内一分支:最优化理论与算法范畴内),特别是概率论与数理统计部分。更进一步,在写上一篇文章的时候,看到机器学习中那么多距离度量的表示法,发现连最起码的期望,方差,标准差等基本概念都甚感模糊,于此,便深感数学之重要性。
很快,我便买了一本高等教育出版社出版的概率论与数理统计一书,此书“从0-1分布、到二项分布、正态分布,概率密度函数,从期望到方差、标准差、协方差,中心极限定理,样本和抽样,从最大似然估计量到各种置信区间,从方差分析到回归分析,bootstrap方法,最后到马尔可夫链,以前在学校没开概率论与数理统计这门课,现在有的学有的看了”。且人类发明计算机,是为了辅助人类解决现实生活中遇到的问题,然计算机科学毕竟只发展了数十年,可在数学.统计学中,诸多现实生活问题已经思考了数百年甚至上千年,故,计算机若想更好的服务人类解决问题,须有效借鉴或参考数学.统计学。世间万事万物,究其本质乃数学,于变化莫测中寻其规律谓之统计学。
话休絮烦。本文结合高等数学上下册、微积分概念发展史,概率论与数理统计、数理统计学简史等书,及rickjin写的“正态分布的前世今生”系列(此文亦可看作读书笔记或读后感)与wikipedia整理而成,对数据挖掘中所需的概率论与数理统计相关知识概念作个总结梳理,方便你我随时查看复习相关概念,而欲深入学习研究的课后还需参看相关专业书籍.资料。同时,本文篇幅会比较长,简单来说:
5部分起承转合,彼此依托,层层递进。且在本文中,会出现诸多并不友好的大量各种公式,但基本的概念.定理是任何复杂问题的根基,所以,你我都有必要硬着头皮好好细细阅读。最后,本文若有任何问题或错误,恳请广大读者朋友们不吝批评指正,谢谢。
开头前言说,微积分是概数统计基础,概数统计则是DM&ML之必修课”,是有一定根据的,包括后续数理统计当中,如正态分布的概率密度函数中用到了相关定积分的知识,包括最小二乘法问题的相关探讨求证都用到了求偏导数的等概念,这些都是跟微积分相关的知识。故咱们第一节先复习下微积分的相关基本概念。
事实上,古代数学中,单单无穷小、无穷大的概念就讨论了近200年,而后才由无限发展到极限的概念。
极限又分为两部分:数列的极限和函数的极限。
定义 如果数列{xn}与常a 有下列关系:对于任意给定的正数e (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切xn, 不等式 |xn-a |或
也就是说,
设函数f(x)在点x0的某一去心邻域内有定义. 如果存在常数A, 对于任意给定的正数e (不论它多么小), 总存在正数d, 使得当x满足不等式0<|x-x0|的极限, 记为
也就是说,
几乎没有一门新的数学分支是某个人单独的成果,如笛卡儿和费马的解析几何不仅仅是他们两人研究的成果,而是若干数学思潮在16世纪和17世纪汇合的产物,是由许许多多的学者共同努力而成。
甚至微积分的发展也不是牛顿与莱布尼茨两人之功。在17世纪下半叶,数学史上出现了无穷小的概念,而后才发展到极限,到后来的微积分的提出。然就算牛顿和莱布尼茨提出了微积分,但微积分的概念尚模糊不清,在牛顿和莱布尼茨之后,后续经过一个多世纪的发展,诸多学者的努力,才真正清晰了微积分的概念。
也就是说,从无穷小到极限,再到微积分定义的真正确立,经历了几代人几个世纪的努力,而课本上所呈现的永远只是冰山一角。
也可记为:,
或
。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10