
数据分析成熟度模型,你处在哪个阶段_数据分析师考试
一项由人力资源研究机构Bersin by Deloitte进行的研究表明:超过60%的企业把很多钱花在大数据分析工具上,希望这些工具能帮助他们的HR部门更多地依靠数据做出决策。但真正成功做到这一点的企业寥寥可数。
一条硕大的鸿沟
通过对480家企业进行调研,我们发现它们当中只有4%实现了对员工的“可预测分析(predictive analytics)”。也就是说,只有极少数的公司能够真正了解影响员工绩效和留存率(retention)的因素,知道如何用数据来确定招聘对象,并懂得如何分析绩效与薪资间的相关性。在我们的研究中,只有14%的企业对员工数据做过实质意义上的数据分析。
那么剩下的84%究竟在干嘛???
在各种应接不暇的报告中凌乱。这些企业依旧困惑于如何有效管理数据,并在整理数据上步履艰难。面对接踵而至的数据报告,它们仍无法生成标准化的可操作指标,以此来实现数据的真正利用。
事实上,很多企业在运用数据方面,仍处在比较初级的阶段。
数据分析成熟度模型
工欲善其事,不只要利其器
想要能够在大数据应用方面如鱼得水,软件和工具固然重要,但不能忽略其他方面的投入:高效的数据管理模式,以提供高质量的数据来源;商业咨询能力,以便能够一针见血识别问题和需求;与财务及运营分析部门的紧密联系;视觉设计和沟通能力。这些技能的重要性不亚于统计学知识、数据分析技术和数学应用能力。
实际上,大多数HR团队指出,找一个统计人员对他们来说不难,难的是找一个能将数据和商务应用结合起来,并能够将研究结果转化成落地方案的项目经理。
从职能层面来说,高效的分析技术团队都有很好的多学科能力,包括商务理解、咨询技巧、数据可视化技术、数据管理能力、统计学知识和领导能力。他们不仅要诊断和解决企业在业务上的问题,还要经常给管理层提供新鲜及时的讯息。
在企业运用大数据的过程中,最大的难题之一就是如何让人们在有了数据之后改变自己固有的行为方式。大多数管理人员都有着很多年积累的“思维体系”和所谓“经验模式”。这些都是阻碍决策者去相信并利用数据的因素。
“明知故犯”的HR经理们
研究对象中有一间公司以薪资涨幅作为变量,对员工的流失率和留存率做了分析。他们之前的薪资水平大致符合一个正太分布,绩效较好的员工得到的工资涨幅略高于绩效稍逊的员工。报告中是这样写的:
“同我们的其他研究结果显示的一样,该公司现行的薪资正太分布是一个错误。那些处于第二、第三分位段的员工(优绩效员工)即便在他们的薪资涨幅只有平均水平的91%时依然会选择留在公司。也就是说,这些人拿多了。
另一方面,那些处在正太分布最右端的员工只有在薪资涨幅高于平均水平15%-20%的时候才会继续留下。”
大多数经理人认为,顶尖员工的绩效高出中等员工很多。假如能让这些人留在公司,付给他们高薪实际上对公司来说是极为有利的。因此,他们即便在得知了研究结果的情况下,依然沿用之前的方式对员工发放薪水。因此该公司不得不推出一套培训项目和新的软件工具来纠正管理者们固有的思维方式,让他们能更多依据数据来决定薪资及奖励分布。
仅有14%的企业真正用对大数据
有太多例子证明依靠数据支撑的HR决策能带来更高的投资回报率。
但遗憾的是,太多的公司尚未涉足该领域,以至于他们无法从中获利。
如果不能将数据分析能力整合到HR策略中,并生成一套以大数据作为支撑的内部管理和薪酬分配系统,那么沦为败者的命运就在所难免。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19