京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析成熟度模型,你处在哪个阶段_数据分析师考试
一项由人力资源研究机构Bersin by Deloitte进行的研究表明:超过60%的企业把很多钱花在大数据分析工具上,希望这些工具能帮助他们的HR部门更多地依靠数据做出决策。但真正成功做到这一点的企业寥寥可数。
一条硕大的鸿沟
通过对480家企业进行调研,我们发现它们当中只有4%实现了对员工的“可预测分析(predictive analytics)”。也就是说,只有极少数的公司能够真正了解影响员工绩效和留存率(retention)的因素,知道如何用数据来确定招聘对象,并懂得如何分析绩效与薪资间的相关性。在我们的研究中,只有14%的企业对员工数据做过实质意义上的数据分析。
那么剩下的84%究竟在干嘛???
在各种应接不暇的报告中凌乱。这些企业依旧困惑于如何有效管理数据,并在整理数据上步履艰难。面对接踵而至的数据报告,它们仍无法生成标准化的可操作指标,以此来实现数据的真正利用。
事实上,很多企业在运用数据方面,仍处在比较初级的阶段。
数据分析成熟度模型
工欲善其事,不只要利其器
想要能够在大数据应用方面如鱼得水,软件和工具固然重要,但不能忽略其他方面的投入:高效的数据管理模式,以提供高质量的数据来源;商业咨询能力,以便能够一针见血识别问题和需求;与财务及运营分析部门的紧密联系;视觉设计和沟通能力。这些技能的重要性不亚于统计学知识、数据分析技术和数学应用能力。
实际上,大多数HR团队指出,找一个统计人员对他们来说不难,难的是找一个能将数据和商务应用结合起来,并能够将研究结果转化成落地方案的项目经理。
从职能层面来说,高效的分析技术团队都有很好的多学科能力,包括商务理解、咨询技巧、数据可视化技术、数据管理能力、统计学知识和领导能力。他们不仅要诊断和解决企业在业务上的问题,还要经常给管理层提供新鲜及时的讯息。
在企业运用大数据的过程中,最大的难题之一就是如何让人们在有了数据之后改变自己固有的行为方式。大多数管理人员都有着很多年积累的“思维体系”和所谓“经验模式”。这些都是阻碍决策者去相信并利用数据的因素。
“明知故犯”的HR经理们
研究对象中有一间公司以薪资涨幅作为变量,对员工的流失率和留存率做了分析。他们之前的薪资水平大致符合一个正太分布,绩效较好的员工得到的工资涨幅略高于绩效稍逊的员工。报告中是这样写的:
“同我们的其他研究结果显示的一样,该公司现行的薪资正太分布是一个错误。那些处于第二、第三分位段的员工(优绩效员工)即便在他们的薪资涨幅只有平均水平的91%时依然会选择留在公司。也就是说,这些人拿多了。
另一方面,那些处在正太分布最右端的员工只有在薪资涨幅高于平均水平15%-20%的时候才会继续留下。”
大多数经理人认为,顶尖员工的绩效高出中等员工很多。假如能让这些人留在公司,付给他们高薪实际上对公司来说是极为有利的。因此,他们即便在得知了研究结果的情况下,依然沿用之前的方式对员工发放薪水。因此该公司不得不推出一套培训项目和新的软件工具来纠正管理者们固有的思维方式,让他们能更多依据数据来决定薪资及奖励分布。
仅有14%的企业真正用对大数据
有太多例子证明依靠数据支撑的HR决策能带来更高的投资回报率。
但遗憾的是,太多的公司尚未涉足该领域,以至于他们无法从中获利。
如果不能将数据分析能力整合到HR策略中,并生成一套以大数据作为支撑的内部管理和薪酬分配系统,那么沦为败者的命运就在所难免。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13