京公网安备 11010802034615号
经营许可证编号:京B2-20210330
微电商背后是大数据在统筹全局_数据分析师考试
2014年除了捧红“O2O”一词之外,“微商”也是今年的当红炸子鸡。自从微信崛起,微电商也随之兴起,今年要说谁在微信朋友圈最活跃,非微商莫属,各种面膜、护肤品代购比比皆是,更有人直接把“微商”定义成了“朋友圈卖货的”,业内人士对于微商的存在也一直处于褒贬不一的态度。相比传统电商,微商似乎给人一种更加虚幻的错觉,其背后暴露出来的问题也是层出不穷:信任危机、售后服务、质量保障等,微商之路要想渐行渐远,除了需要一条明确的规划之外,还需拥有自己的大数据!
一、微商无法用一种商业模式来定义
微电商作为一个新兴产业,有着微信做它的销售平台,为它解决支付问题,又有亿万粉丝成为它的潜在客户,为它解决客源问题。但凡事都有两面性,微商数量喷井的这两年,也造成了如今这种混乱的局面,单从商业模式来分析,它无法只用一种来定义。
首先微商可以是C2C模式,这种发展模式是目前最普遍的现象,只要你注册一个微信,拥有朋友圈,再从一商家那里拿到货,便可直接在朋友圈宣传,利用粉丝关系进行销售。但是这种模式的缺点在于无法保障售后服务。例如:面膜、护肤产品海外代购。
其次微商可以是B2C模式,该模式下商家通过微店直接面向消费者销售产品和服务。相比C2C模式,多了一层服务保证。其缺点在于买家无法辨别卖家的可信度,微店设置没有任何门槛,其中不乏一些黑店浑水摸鱼,欺骗消费者。
最后微商也可以是O2O模式,其中有不少传统零售企业做微电商的案例,在PC电商时代,拥有复杂的线下销售体系曾被认为是一种负担,但是O2O改变了这种现状,拥有线下实体店的企业是目前最被看好最适合O2O转型的体系,结合线上线下统一运营。
二、 微电商背后是大数据在统筹全局
百度CEO李彦宏认为,未来科技发展将与大数据有很大关系。在这个“数据爆炸”的年代,每天都有大量的数据产生,但有些数据并没有发挥它们真正的价值。就拿微电商来说,其中有一小部分是只争朝夕,只顾赚取眼前利益的,对于这类微商,他们没有更多的资金去聘请第三方来帮助他们收集管理数据,更不会主动去分析每次交易背后产生的有利数据,因此他们的微商之路只会朝不保夕,日渐黄昏。
相反如果是追求长期发展,并有较大规模的微商,其背后是大数据在统筹全局。下面结合齐著云科技有限公司推出的顾客行为管理系统为例,分析如何利用大数据来经营线上实体店?
(一)通过会员行为数据分析,生成报表实现精准营销
消费者无论是通过微信还是APP购物,一定会留下他的行为数据,例如顾客在哪一款呢大衣界面逗留的时间较长,就能知道他比较偏爱哪一款的服装。这些看似微小的细节,在微商这里就是有价值的数据。在顾客行为管理系统中,我们能清楚看到每一件商品交易的时间、次数、金额、客户地域分布等信息,将信息转变成数据报表,利于企业做出精准性的营销。
(二)后台数据管理规范化,实现线上线下信息同步
O2O推行的难点在于线上线下信息的统一化、规范化,目前零售企业的营销体系主要包括这两大类:直营体系和直营+代理加盟体系,针对直营体系的企业,齐著云认为,所有门店和微店的数据信息进行统一管理并不难,中间不会牵涉任何信息泄露、利益争夺问题,很容易实现线上线下信息的同步;但是针对直营+代理加盟体系的企业而言,我为什么要和直营商一起同步信息,会不会抢占我代理区域的客户资源?这些都是他们担忧的问题,那么要如何说服代理加盟商一起做大数据管理呢?——建立利益分享机制。将所有新增用户的地点进行经纬度的获取,并及时关联至该位置最近的门店信息,将该用户的信息与该门店进行绑定。企业根据自行设定的分享规则,可以将一部分营业额分派给所属门店或渠道,从而实现利益共享,提高导购对微商城推广的积极性,同时解决代理加盟商的转型顾虑。
三、“另辟蹊径”方能使微商走得长远
微商13年发展,经历了红利时期,各大领域都有品牌接连崛起,给很多平凡人带去了一笔财富,截至今日,仍有很多自然人甘愿投身到这一行业中。笔者认为,在很多人眼中微电商就是利用微信平台做生意的人,其实不尽然,所谓微电商应该是以整个移动端作为销售平台,而不是只限于微信。当大家还在朋友圈抢的头破血流的时候,另一边已经有企业开始另辟蹊径了。是什么?它就是微官网。无需下载APP客户端占据我们的手机内存,消费者只需在手机上创建一个快捷键,便能在任何有WIFI的环境下畅快购物。微商之路上除了APP、微信,如今又多了一个微官网来分割移动端市场,笔者相信暨微信之后,微官网依然会是先行者得天下。
四、总结:大数据是未来移动电商的行业趋势
据统计,中国移动网民数量已经达到5.27亿人,每天都可能有几千人甚至几万人在浏览你的手机商店(微官网/APP/微商城),此时如果微商还没有开始收集用户的数据,与后期营销进行融合,那即便做了O2O,也无法实现精准营销。目前,也许仍有很多企业无法理解大数据的作用是什么,但是过不了多久我们的市场会替商家逐步证明大数据的存在价值,完成数据积累将会是移动电商面向未来发展的一个根基,也是行业趋势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07