京公网安备 11010802034615号
经营许可证编号:京B2-20210330
学习SPSS,要有小强精神_数据分析师考试
从2007年开始,我已经陪SPSS玩了8年。从一个小菜鸟开始自学SPSS和统计分析,直至数据分析、数据挖掘的基本知识。这期间,博客是伴我学习的最主要阵地,记录学习过程、认识这个领域里的人,交流再到提升。
SPSS是一个非常神奇的案头工具,跑一组数据的背后是探索一项业务问题,从数据到规律,但并不是所有的分析项目都能得到价值信息,大多时候是枯燥、反复的过程。想掌握SPSS,没有统计分析和数据化思维就是白搭。
统计是SPSS的基石,严谨的统计学思维和SPSS统计方法被滥用是两个矛盾体,学习SPSS的人都会遇到这个问题。一边是简单易用的菜单式操作,另一边是滴水不漏的统计基础,而spss傻瓜式的默认设置基本能完成大部分分析项目,这极易造成统计分析方法被滥用,尤其是SPSS新手。
8年SPSS经验,是不是就可以称得上是老手了?我觉得还远远不止,现在数据挖掘也罢,大数据也罢,统计学作为基础学科对其未来发展衍变的影响不可替代。学习SPSS,没有高手低手之分,唯一的分别是使用SPSS的频率完全不同。高校搞科研,一个工科的博士可能只需要spss来完成一篇论文,从此丢弃;而一个真正的喜欢研究数据的人,可能视spss为知己,案头必备。
统计往深处讲,一入统计深似海。此处省略n字,我只讲一下发生在我身边的事。由于我的博客专注于SPSS案例分享,多年坚持不懈吸引到很多读者,经常遇到SPSS咨询,千奇百怪的问题,各种各样的业务环境,我觉得对某项统计方法掌握的不错,实际上在和具体业务分析对接中,才发现有偏差,如何正确通过统计思维和方法破解业务问题的数据规律更像是一门艺术。
很多初学者对我说:数据分析的门槛太高了,所以一直没有下决心行动起来。这话是对的也是错的。为什么对?数据分析涉及统计基础、工具使用、可视化、数据挖掘方法、数据化思维,尤其是如何与业务问题进行结合的实践经验,所以说有一定的门槛。为什么不对?如果你的兴趣足够浓厚,一切困难都阻挡不了你前进的脚步。
说到最后这一句,不由想到了小强,都说打不死的小强,小强到底强到哪里?蟑螂的历史有数亿年,而人只有几百万年;蟑螂在水下至少可以活上30分钟;蟑螂的头断了以后,身子和头还可以分别活上好几天,最后的死因是饿死;蟑螂拥有梯状神经系统,在大脑取出后,仍可以通过分布于身体各处的神经来控制运动及生理功能,巨强。
学习spss、学统计,学数据分析,就要有小强精神,不屈不饶,坚持不懈。一入统计深似海,但我们还要从此不屈如小强。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28