
大数据将是移动应用与O2O模式的基础_数据分析师考试
“O2O模式与移动应用如何装得下大数据时代”。话题围绕以下问题展开:大数据的定义、大数据在服饰业的价值、移动应用以及O2O模式下的大数据应用等主题。
简单介绍下活动背景,这次活动是华南地区服饰行业CIO协会举办的“2014年度行业信息化高峰论坛”,该协会是华南地区最有影响力的服饰CIO协会,由深圳市赢家服饰有限公司信息总监胡剑雄等发起成立,经常进行案例应用分享、行业前沿讨论活动。
活动的主持人胡剑雄首先提出,如何看到大数据在服饰业的价值这一问题。卡宾服饰(中国)有限公司信息管理部总监邹聪认为,“大数据有没有价值,首先看服饰企业是否把握住数据源头。”卡宾的IT系统是加盟商开店必须配备的合同条件,为此卡宾在罕见地可以管控到全国1000多家门店,可管理到门店、人员和货品信息,门店的信息管控能做到实时的管控。
“现在人们不谈论大数据,好像有一点落伍,就好像一个企业不上SAP,就有一点落伍的感觉”。安正时尚集团股份有限公司的CIO王齐斌表示,“事实上目前服饰行业的数据基础还有点薄弱,目前应首先关注企业内部的数据,这些数据是移动互联时代的数据基础”。
此次活动讨论的第二个问题是,服饰行业的O2O模式到底是什么,现场讨论嘉宾的理解相对一致:O2O是颠覆服装业的一种运作模式,可以弥补在实体店收集不到顾客数据的遗憾,最终推动服饰行业从批发模式向零售模式的转变等等。
在实际的应用中,有的企业已经开始进行大数据的尝试。周聪分享了一个搭配分析的故事,最近卡宾对排名前30名的搭配购买数据分析发现,男性的购买规律并不符合人们的一般想象,大多数人会认为男性购物会选择一件上衣搭配一件裤子的购买搭配,但是分析结果发现,很多男性顾客采取两件上衣、两件裤子的购买方式,并且偏向购买两件颜色和风格相近的衣服,这一发现让卡宾更转变了设计思路,更注重服装的主题设计。
卡宾在进行大数据的尝试前,进行了大量的基础工作,卡宾很注重店铺主数据的设立和管理,主数据的变更必须老板签字才能改变,这种严格的数据管理方式,很好地支持了后续的商品管理等运营,为此卡宾可以实现对线上线下渠道的营销把控,以及可以针对VIP客户提供精准的导购服务模式。
在进行大数据分析的过程中,王齐斌的实践感受是,如何构建大数据的预测模型,进行人、货、场的分析,是一项具有挑战的工作;其次在操作层面上,在企业推动大数据的项目时,IT部门一定不要冲在前线,而应该与各业务部门、高层一起来推动这个项目。“在谈论大数据的分析前,目前整个O2O体系的建立还是一个难题,既没有成功的案例也没有相应的技术服务公司,为此至今也无法解决现在的微购物中没有货品搭配的功能。”深圳市品嘉百货股份有限公司信息总监蔡建勇表示。
O2O下的大数据应用是一方面,移动应用与大数据的应用是另一个同等重要的话题。“大数据做的是O2O的未来,可以提升O2O的价值空间,当来自移动端的客户访问和交易量发展到一定规模,大数据的价值会越来越明显,这是一项基础的技术工具。”周聪表示。
“无论出于O2O还是移动应用的考虑,企业都必须考虑应用大数据。”蔡建勇认为,“应用大数据需要解决两个问题:首先需要培养大数据分析的能力问题;其次企业需要真正将大数据用于解决业务的实际问题,包括用于决策层的管理、帮助业务部门实现商品管理、营销管理等业务”。
“大家更多谈论了应用层面,实际上企业对于数据的底层架构、未来的性能安全也应该密切关注;其次,企业还需要关注货品的一体化、会员的一体化等后台的工作。”深圳德津实业有限公司CIO张腾表示。邹聪从商业的角度提出另一个观点,“无论谈论O2O,移动应用或者大数据,一切都要回归商业本质。企业需要想清楚公司商业模式是什么,品牌定位是什么,而不是盲目追求O2O,移动应用或者大数据”。
作为活动的主持人的胡剑雄总结表示,此次的大数据讨论,最终希望服饰同行认识到整个行业已经进入大数据时代,而并非要马上对大数据进行应用,“此次活动参加讨论的嘉宾都认可,大数据将是企业在移动应用端的发力的工具,以及O2O模式深入应用的基础,这些应用需要回归商业本质,解决商业的实质问题”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19