京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据将是移动应用与O2O模式的基础_数据分析师考试
“O2O模式与移动应用如何装得下大数据时代”。话题围绕以下问题展开:大数据的定义、大数据在服饰业的价值、移动应用以及O2O模式下的大数据应用等主题。
简单介绍下活动背景,这次活动是华南地区服饰行业CIO协会举办的“2014年度行业信息化高峰论坛”,该协会是华南地区最有影响力的服饰CIO协会,由深圳市赢家服饰有限公司信息总监胡剑雄等发起成立,经常进行案例应用分享、行业前沿讨论活动。
活动的主持人胡剑雄首先提出,如何看到大数据在服饰业的价值这一问题。卡宾服饰(中国)有限公司信息管理部总监邹聪认为,“大数据有没有价值,首先看服饰企业是否把握住数据源头。”卡宾的IT系统是加盟商开店必须配备的合同条件,为此卡宾在罕见地可以管控到全国1000多家门店,可管理到门店、人员和货品信息,门店的信息管控能做到实时的管控。
“现在人们不谈论大数据,好像有一点落伍,就好像一个企业不上SAP,就有一点落伍的感觉”。安正时尚集团股份有限公司的CIO王齐斌表示,“事实上目前服饰行业的数据基础还有点薄弱,目前应首先关注企业内部的数据,这些数据是移动互联时代的数据基础”。
此次活动讨论的第二个问题是,服饰行业的O2O模式到底是什么,现场讨论嘉宾的理解相对一致:O2O是颠覆服装业的一种运作模式,可以弥补在实体店收集不到顾客数据的遗憾,最终推动服饰行业从批发模式向零售模式的转变等等。
在实际的应用中,有的企业已经开始进行大数据的尝试。周聪分享了一个搭配分析的故事,最近卡宾对排名前30名的搭配购买数据分析发现,男性的购买规律并不符合人们的一般想象,大多数人会认为男性购物会选择一件上衣搭配一件裤子的购买搭配,但是分析结果发现,很多男性顾客采取两件上衣、两件裤子的购买方式,并且偏向购买两件颜色和风格相近的衣服,这一发现让卡宾更转变了设计思路,更注重服装的主题设计。
卡宾在进行大数据的尝试前,进行了大量的基础工作,卡宾很注重店铺主数据的设立和管理,主数据的变更必须老板签字才能改变,这种严格的数据管理方式,很好地支持了后续的商品管理等运营,为此卡宾可以实现对线上线下渠道的营销把控,以及可以针对VIP客户提供精准的导购服务模式。
在进行大数据分析的过程中,王齐斌的实践感受是,如何构建大数据的预测模型,进行人、货、场的分析,是一项具有挑战的工作;其次在操作层面上,在企业推动大数据的项目时,IT部门一定不要冲在前线,而应该与各业务部门、高层一起来推动这个项目。“在谈论大数据的分析前,目前整个O2O体系的建立还是一个难题,既没有成功的案例也没有相应的技术服务公司,为此至今也无法解决现在的微购物中没有货品搭配的功能。”深圳市品嘉百货股份有限公司信息总监蔡建勇表示。
O2O下的大数据应用是一方面,移动应用与大数据的应用是另一个同等重要的话题。“大数据做的是O2O的未来,可以提升O2O的价值空间,当来自移动端的客户访问和交易量发展到一定规模,大数据的价值会越来越明显,这是一项基础的技术工具。”周聪表示。
“无论出于O2O还是移动应用的考虑,企业都必须考虑应用大数据。”蔡建勇认为,“应用大数据需要解决两个问题:首先需要培养大数据分析的能力问题;其次企业需要真正将大数据用于解决业务的实际问题,包括用于决策层的管理、帮助业务部门实现商品管理、营销管理等业务”。
“大家更多谈论了应用层面,实际上企业对于数据的底层架构、未来的性能安全也应该密切关注;其次,企业还需要关注货品的一体化、会员的一体化等后台的工作。”深圳德津实业有限公司CIO张腾表示。邹聪从商业的角度提出另一个观点,“无论谈论O2O,移动应用或者大数据,一切都要回归商业本质。企业需要想清楚公司商业模式是什么,品牌定位是什么,而不是盲目追求O2O,移动应用或者大数据”。
作为活动的主持人的胡剑雄总结表示,此次的大数据讨论,最终希望服饰同行认识到整个行业已经进入大数据时代,而并非要马上对大数据进行应用,“此次活动参加讨论的嘉宾都认可,大数据将是企业在移动应用端的发力的工具,以及O2O模式深入应用的基础,这些应用需要回归商业本质,解决商业的实质问题”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13