
大数据分析助推审计信息化_数据分析师考试
全球已然进入大数据时代。总量大(Volume)、种类多(Variety)和速度快(Velocity),数据的3V特征促使每个行业都推动着自身信息化发展,而四川省审计厅在面临被审计单位的发展变化时,也积极地应对时代的变革,创新审计方法手段,努力推动审计工作的转型升级
审计工作的出路在信息化。省审计厅对大数据审计高度重视,2014年以来,以“金审工程”建设为基础,加强制度规范,创新审计方式,培养人才队伍,全面推进四川审计信息化工作,并且从省本级做起,搞好全省数字式审计的顶层设计。
建立长效机制
数据归集分析由制度说了算
去年,全国审计工作会议对大数据审计提出三点要求:数据归集要全、数据分析要深、技术手段要新。为了更好地达到大数据审计的发展要求,审计厅组建了一个全新的部门——电子数据审计处。该部门依照这三点要求发挥职能,负责电子数据的归口管理,组织开展跨行业、跨部门、跨地区的数据分析和利用,并组织开展联网审计和省直各部门(单位)电子信息系统审计等相关工作。
审计厅相关负责人告诉记者,目前数据的收集方式有两种,一是结合审计项目的进行对所涉及数据进行收集存储,另一种是根据需要制定数据采集计划主动对国土、社保等与审计相关的重要数据进行收集、整理。数据采集后按行业、按单位、按年度,以目录的形式分门别类地储存,方便各个审计项目的调用和分析。目前,审计数据中心已经收集了包括全省地税、社保、工商等8个部门共计1.5TB数据。
数据的收集是为数据分析做准备,审计人员通过数据分析可以快速锁定疑点、定向排查和查实查透。“因为数据具有普遍联系性,所以我们采用的方法主要是进行数据比对。”电子数据审计处负责人解释道,比如对于医保基金的审计,审计人员就需要将医院系统与医保中心的相关数据进行对比,核实两者是否相匹配。
在全省保障性安居工程跟踪审计中,审计组开展了跨地区、跨行业的数据对比分析。一是将收集的部分市、县10多万条人员信息数据与房管部门商品房信息进行对比,发现上千名购有商品房、超过规定标准的人员,依然在享受保障性住房。随后,将其与同期养老保险缴费基数、公积金缴费基数、个人所得税应税数以及机动车辆登记信息进行对比,查处了骗取或违规享受保障性住房,骗取或违规领取货币补贴等问题。审计除责成相关部门整改外,对典型的违纪违规问题,已移送当地纪检监察部门处理。
除了不断强化对数据的使用、分析,省审计厅还高度重视数据的安全管理。数据收集、分析的具体操作流程非常严谨规范,如跨地区、跨部门、跨行业的数据收集必须发出正式公函。而数据分析查出的疑点,审计厅也会给被审计单位发出建议函,对方将在1-2个月内将核定结果反馈审计厅,整个收集和分析过程,都要保证数据的绝对安全。审计厅还专门出台了《四川省审计厅电子数据安全管理办法(试行)》和《四川省审计厅现场审计数据管理办法(试行)》,形成了数据安全控制长效机制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04