京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析助推审计信息化_数据分析师考试
全球已然进入大数据时代。总量大(Volume)、种类多(Variety)和速度快(Velocity),数据的3V特征促使每个行业都推动着自身信息化发展,而四川省审计厅在面临被审计单位的发展变化时,也积极地应对时代的变革,创新审计方法手段,努力推动审计工作的转型升级
审计工作的出路在信息化。省审计厅对大数据审计高度重视,2014年以来,以“金审工程”建设为基础,加强制度规范,创新审计方式,培养人才队伍,全面推进四川审计信息化工作,并且从省本级做起,搞好全省数字式审计的顶层设计。
建立长效机制
数据归集分析由制度说了算
去年,全国审计工作会议对大数据审计提出三点要求:数据归集要全、数据分析要深、技术手段要新。为了更好地达到大数据审计的发展要求,审计厅组建了一个全新的部门——电子数据审计处。该部门依照这三点要求发挥职能,负责电子数据的归口管理,组织开展跨行业、跨部门、跨地区的数据分析和利用,并组织开展联网审计和省直各部门(单位)电子信息系统审计等相关工作。
审计厅相关负责人告诉记者,目前数据的收集方式有两种,一是结合审计项目的进行对所涉及数据进行收集存储,另一种是根据需要制定数据采集计划主动对国土、社保等与审计相关的重要数据进行收集、整理。数据采集后按行业、按单位、按年度,以目录的形式分门别类地储存,方便各个审计项目的调用和分析。目前,审计数据中心已经收集了包括全省地税、社保、工商等8个部门共计1.5TB数据。
数据的收集是为数据分析做准备,审计人员通过数据分析可以快速锁定疑点、定向排查和查实查透。“因为数据具有普遍联系性,所以我们采用的方法主要是进行数据比对。”电子数据审计处负责人解释道,比如对于医保基金的审计,审计人员就需要将医院系统与医保中心的相关数据进行对比,核实两者是否相匹配。
在全省保障性安居工程跟踪审计中,审计组开展了跨地区、跨行业的数据对比分析。一是将收集的部分市、县10多万条人员信息数据与房管部门商品房信息进行对比,发现上千名购有商品房、超过规定标准的人员,依然在享受保障性住房。随后,将其与同期养老保险缴费基数、公积金缴费基数、个人所得税应税数以及机动车辆登记信息进行对比,查处了骗取或违规享受保障性住房,骗取或违规领取货币补贴等问题。审计除责成相关部门整改外,对典型的违纪违规问题,已移送当地纪检监察部门处理。
除了不断强化对数据的使用、分析,省审计厅还高度重视数据的安全管理。数据收集、分析的具体操作流程非常严谨规范,如跨地区、跨部门、跨行业的数据收集必须发出正式公函。而数据分析查出的疑点,审计厅也会给被审计单位发出建议函,对方将在1-2个月内将核定结果反馈审计厅,整个收集和分析过程,都要保证数据的绝对安全。审计厅还专门出台了《四川省审计厅电子数据安全管理办法(试行)》和《四川省审计厅现场审计数据管理办法(试行)》,形成了数据安全控制长效机制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29