京公网安备 11010802034615号
经营许可证编号:京B2-20210330
DMP加速程序化营销进程:用大数据精准匹配用户
近期,腾讯广点通的DMP正式上线。这可以说是给互联网广告和大数据营销领域投掷了一颗炸弹。
所谓DMP(Data Management Platform 数据管理平台),顾名思义,就是整合所有涉及广告库存购买和出售的数据,通过这个平台可以建立精准用户细分,在广告网络和广告交易市场,使得广告投放直接到达这些选定的人群;同时,通过测量哪些用户细分群体和广告媒体在广告投放中具有最佳的表现,使媒体采购和广告创意可以得到适时的优化。
简而言之,DMP就是大数据营销的大脑,特别是程序化购买已是大势所趋。这个时候,DMP可以协助广告主管理广告投放、站点流量、电商成交、社交粉丝、受众兴趣等重要数据,并在科学建模和深入挖掘后向DSP提供中立的受众描述、全面的行为分析,协助广告主和媒介执行机构来优化广告投放的受众质量、评估DSP和Ad Exchange平台的转化效率和覆盖成本,从而使营销效果最大化。
既然DMP为数据管理平台,那么数据来源为何处?在美国,第三方DMP的商业模式是成立的,这些DMP强项在于拥有强大数据源,或者可以整合很多数据,所以能提供便利的第三方数据购买服务,例如eXelate,Lotame,BlueKai等等。
但是在中国,则国情有所不同。中国数据市场信息产业起步比较晚,数据产业链形成相对不完善,数据管理使用则较不规范;互联网数据泛滥、线下数据缺失诸如此类现象比比皆是,大部分数据掌握在政府部门、运营商和互联网巨头手里。
BAT三家互联网巨头,随着互联网和移动端的深入发展,用户在互联网上的各种行为,包括社交、电商、搜索等数据,都是从一定程度上能够反映出一个用户的偏好、习惯等各种各样的特征。这就是DMP的数据基础。
由于业务侧重点不同,BAT三家的数据特征非常明显:
1) 百度主攻搜索,他们声称可以知道60%多的中国网民每天都在搜索什么,对什么感兴趣;
2) 阿里强项是电商,他们清楚的是,消费者喜欢什么样的商品品类、喜欢什么样的服务。阿里的用户是直接的消费者,和钱的距离最近,所以在这个方面相对而言,通过阿里的数据来投放广告能够带来更直接的效果;
3) 至于腾讯则是精耕于社交领域十余年的公司,每个互联网用户都在腾讯的产品上因为社交而花费大量的时间,所以,腾讯某种程度上最清楚用户的各种兴趣爱好等行为特征。在这个基础之上,腾讯还把京东、58同城、搜狗搜索等这些腾讯系公司拉过来,一起补齐腾讯在电商、搜索等方面的数据短板。
然而,数据的量级大并不意味着其质量好,无价值的数据会大大降低营销效率与精准性。这需要DMP进行数据分析,留存精华。DMP通过各种算法对数据进行分析,能看到每个IDFA背后所隐藏的具体信息,有目的性的进行信息的分类进而实现人群描摹,形成用户人群标签,把每一个冰冷的数据,升级为可用的广告投放信息价值,为广告的投放奠定基础。此时,拥有海量高质数据与先进分析能力的DMP显得意义重大。
除此之外,从广告主的角度来看,稳定的消费者标识体系是非常重要的。社交身份的覆盖度和稳定程度在年轻消费者群体中有超过手机号码的迹象,以社交身份为核心,在去隐私化后积累、对接、发掘数据价值,会成为未来DMP的常规做法。所以,在营销领域,平台方所拥有的数据能力的竞争,实际上是用户社交关系和身份体系领域的竞争。BAT三家,唯有腾讯能够提供用户稳定的用户标识体系,这是在眼下统一用户数据孤岛最有效的解决方式了。
在腾讯广点通推出DMP之前,百度和阿里也已推出过DMP服务。阿里的相关产品叫阿里妈妈DMP(达摩盘),百度的产品叫百度DMP数据服务。但是目前,广点通组建DMP,或许能够成为后起之秀。腾讯财报显示,2015年第一季度,腾讯的网络广告业务的收入实现快速同比增长,主要反映QQ空间手机版和微信公众账号所带来的社交网络效果广告的收入增长。约40%的品牌展示广告来自移动平台,约75%的效果广告收入来自移动平台。而腾讯下一步的重点,将继续积极投资于主要内容以进一步提升公司的流量,并扩展公司的移动广告资源,提升公司的效果广告服务能力。所以,社交与效果广告部将会是腾讯社交数据变现的主力军。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07