京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据基金该怎么投_数据分析师考试
自去年以来,大数据基金纷纷成立。在运作了将近一年的时间里,这些大数据基金体现出来的特性如何?适合什么样的投资人?如何投资才能收益最大化?
风格迥异
目前市场上正在运行的大数据基金有4只,分别是中证腾安价值100指数、中证百度百发策略100指数、中证淘金大数据100指数和大数据系列策略指数(i100和i300)。4只跟踪上述指数的基金分别是博时中证淘金大数据100、银河中证腾安指数,广发百发100、南方大数据100。
具体从4只指数基金来看,风格迥异的同时也有相似点。
广发百发100跟踪百发100指数。该指数采用百度金融搜索和用户行为大数据,通过相应的数据挖掘和分析手段,将涉及特定金融实体的数据进行自动分析、归并、统计和计算,并引入量化投资模型,编制股票市场指数。
南方新浪大数据i100与广发中证100较为相似,它以新浪财经的互联网财经大数据应用为特色,基于财经新闻媒体与社交平台海量大数据,在选股策略上,i100指数综合财务、市场驱动、大数据三大因子。
博时中证淘金100,从编制方案来看,以电商商品类目相关中证三级行业的所有股票为样本空间,从中根据综合财务因子、市场驱动因子、聚源电商大数据因子选取综合评分最高的样本股,并采用等权重计算。数据来源为支付宝的实际交易,包含了行业的价格、销量、人气等景气程度数据。对样本空间的股票,按其综合财务因子、综合市场因子和淘宝大数据因子计算的综合评分降序排列,选取排名前100名的股票作为中证淘金大数据100指数成分股。
银河定投宝中证腾安价值100更偏爱被低估的上市公司:指数依据定价偏离程度排序,佐以质价比率、公司资质、每股评分等多项财务指标,选择市场价格相对低估的100家上市公司股票为样本。指数样本主要集中于工业、可选消费及医药卫生三个中证一级行业,样本数量分别达到30只、23只及14只,合计权重达67%。信息技术、原材料、金融地产、主要消费、电信业务、能源及公用事业依次排名4到10位。
高贝塔适合波段操作
从这些大数据指数走势来看,更具备高贝塔产品的特性。
今年以来,淘金100涨幅86.37%,中证腾安价值100涨幅64.01%,百度100涨幅51.65%,新浪大数据i100涨幅82.37%。同期上证综指今年以来的涨幅为25.83%,沪深300涨幅18.18%,创业板指数涨幅96.89%。
自6月份发生的股市大跌,沪深300由最高点跌至近期最低点的跌幅为34%,上证指数跌幅不到35%,创业板指数跌幅51%。同期,淘金100跌幅46%,中证腾安价值100跌幅44%,百度100指数跌幅49%,新浪大数据i100跌幅42.7%。
从4只大数据基金或长或短的历史业绩可发现,大数据基金相对于普通的权益类基金在股市中表现为净值波动大。有基金经理表示,与成熟市场主要由理性机构投资者构成相比,A股市场仍以散户为主,因此市场受投资者情绪影响很大,投资者情绪可以更多地反映在互联网大数据上,但投资情绪的巨大波动也会带来互联网基金的高贝塔属性,对此投资者要有心理准备。从目前来看,投资者在市场低位布局该类基金,等待市场热度提升,是比较好的方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28