京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据助力企业革命_数据分析师考试
新的计算时代已经到来,我想大家对此是毫无质疑的,我们看到了云计算、社交媒体、物联网,还有移动,这样一些新的技术正在改变我们每天的思考方式、行为模式和生活模式。在带给普通人很多便利的情况下,这样一些科技技术对我们的企业,企业的决策者也带来了很大的危机感。 在IBM全球的CEO调研中,我们发现,企业CEO们纷纷表示科技已经成为未来5年影响企业决策层最重要的一个因素。当他们感受到新的科技技术带给企业的很多商机的同时,其中也有不少人害怕落伍于这些科技技术,从而错失了未来的发展机会。
而在新的计算时代,大数据悄然成为一项新的技术代名词,它的核心是什么?我想用管理大师,也是《世界大趋势》、《亚洲大趋势》和《中国大趋势》的作者约翰・奈斯比特的一句话来概括:大数据是下一代的自然资源,它是人类历史上第一次产生的经济体,这个经济体是基于信息这样一个关键信息,它不但是可续的而且是可自我生成的,我们想用完它是不可能的,可我们却有可能被它淹没。
顶尖科技发展的趋势正在影响着企业竞争的新格局,很多企业也非常敏感的捕捉到这些动态,并不断的探索如何运用这些科技趋势来探索新的业务模式,甚至改变行业发展的模式。
与此同时,来自IBM商业价值研究院的一份调查报告也显示出,大部分企业并没有做好相关的准备。这份报告以全球企业的决策层领导者为调查对象,请这些企业的决策层领导者们选出最影响企业竞争力的科技趋势有哪些,以及他们所在的企业对这些趋势的准备程度。从调查结果来看,企业决策层们认为有五大趋势会影响企业的竞争力,这包括移动设备的增值、生态系统之间的协作、非结构化数据的爆炸、云平台及方案、智能连接的系统,同时,大多数决策层们表明他们还未做出成熟的应对方案。
转型变革势在必行
来自于全球CEO们的看法,全球超过75%的精英企业的CEO们认为在今天的互联网时代必须产生一个新的人才战略,过去那种用传统的规章制度来规范员工的制度已经落伍,在新的时代,需要员工们能够充分的协作、合作,企业需要通过价值体系来激励员工。 分享一个小的故事,2013年3月份IBM在全球员工中做了一个“价值脑风暴”的活动,活动维持了4天,我们的组织者们利用IBM的大数据以及协作平台,搭建了一个全球社交的平台,全球有超过25万的员工一起加入到这样的活动中。
有近34万人次造访,还有近13万的留言帖。我们的CEO,以及她的智囊团同时利用我们自己的大数据分析技术,深入的分析了近13万的留言帖,通过结论帮助智囊团一起制定如何围绕IBM的3个核心价值制定了新的9点做法,并在员工中推广这9点做法。可想而知,因为这9点做法实际上是来自于员工的互动,自己的声音,它很自然的在员工中得到了最大程度的共鸣和认可。
来自全球最优秀的企业的CEO们,有超过70%的人认为在今天这个时代,企业必须建立一个非常强大的业务分析和洞察的能力,然后非常深入的了解你的客户,去快速响应客户的需求,以个性的服务来赢得客户。 例如,一个来自法国,名叫欧诗丹的负责家具用品的客户,他们希望通过线上客户使用行为的分析,帮助企业制定针对客户细分市场的需求策略。这个过程中他们使用了IBM的解决方案,在对线上客户分析的基础上,结合现有资料库中客户的基本信息,完善客户档案,制定个性化的针对客户的细分需求的服务方案。此方案给企业带来的价值是:线上成长超过了50%;线上收入增长了将近17倍。
大数据推动行业创新
大数据在我们看来不只是一个技术上的概念,更是企业的一个商业战略,基于信息和数据资源的一个商业战略,而各行各业也都面临着大数据的挑战。
政府行业
我们知道政府行业对于潜在的一些威胁是非常敏感的,我们接触到的一个政府客户需要对声音进行分析,并且他的需求是把分析时间从一个小时级别降低到一个秒级别。在采用IBM大数据技术之后,他们成功地把250TB的声音数据查询降低到70毫秒,大大增强了实时响应的速度。
电力行业
电力行业拥有大量的数据,包括电力网络的数据等等。所以,电力行业拥有非常好的大数据应用土壤。通过调研,我们了解到一家电力企业的客户,希望通过分析PB级别的数据值,从中找到方式和方法更好地预测如何进行电力维修、如何提高产能。最终,通过使用IBM的深度分析设备的大数据技术手段,以上这些需求分析在几分钟内就完成了。
医疗行业
利用大数据的技术手段,一家医院实现了对早产儿身体数据的实时监控,根据这些数据的分析,医生可以提前24小时发现早产儿的病况,这24个小时对于这一类的病人来讲是生和死的区别,而医院通过使用大数据技术手段把之前的不可能变为可能。
零售行业
我们知道零售行业对于存货是非常看重的,存货管理的好坏往往影响它利润的空间,我们接触到一个零售行业的客户,他们对存货的查询能力不满意,于是在IBM的帮助下,他们改进了传统的数据仓库的方法,引入大数据深度分析的一体机重新进行迁移,并且进行建模,使得他们查询能力提高了80%。同样在股票证券,在电信运营等行业也有相关案例。
深挖大数据的价值
我们认为大数据从技术角度来讲不只是一个技术,一个产品,它应该是一个集成的平台,它能够帮助我们和客户很好的管理具有四维特性的一些数据,并且从四维特性的数据中获取洞察,帮助企业实现价值体现。有些人认为大数据是买一些硬件存储这些数据就够了,但其实这对企业来说远远不够,一个企业只有从大数据中获取价值,这些数据对你来讲才是真正有价值的,如果它不能给你带来任何价值的话,它其实就是一堆垃圾。
下面我就一些令人兴奋的大数据应用场景做一些介绍。 Constant Contact是一家关注电邮营销的美国公司,它的主要业务是针对全球50万的中小企业做营销推广,他希望运用大数据的技术分析350亿封电子邮件,并从中提取信息,帮助他的企业用户制定精准的电子邮件推送策略,包括客户在哪个时间段发送电子邮件能够得到最佳的回复等。最终,在利用IBM大数据技术后,Constant Contact的分析能力提高了40倍,客户电子邮件的回复率提高了15%到25%。目前,他们正希望进一步利用大数据技术对回复邮件中的细节信息进行分析,希望帮助客户寻找到新的业务价值成长点。 我们在全球的客户大数据使用场景中进行了一个总结,发现了五个具有高价值的大数据应用场景,这五个高价值的大数据应用场景,不仅给企业带来了价值回报,实际获益收入,同时也是具有高复制性的大数据应用场景。
大数据探索、寻找,可视化,通过理解所有的大数据来更好了解业务现状; 增强360度客户视图,整合内部及外部信息源,获取真正的统一客户视图; 安全及情报扩展,实时降低风险,发现欺诈及监控网络安全; 运维分析,分析多种多样的机器数据来提高业务表现; 数据仓库扩展,集成大数据和数据仓库能力来提高运维管理效率。 我们认为大数据对于企业的采用和探索,如果只从技术角度去探求,只从技术角度去立项,这样的大数据的价值对于企业的挖掘实际上是不够充分的,只有企业从领导力上进行一个变革,转变新的思维才能真正推动企业利用大数据来进行转型和创新。
在大数据的落地过程中,我们发现大数据技术给企业的业务层面带来的变革是非常明显的,企业在今天这样一个大数据时代,是完全能够利用这样一些科技技术的进步,去发掘企业内部的推动力,推动企业创新和转型。
所以,这也使得企业的业务层面的参与,甚至是主导大数据的变革是必不可少的,同时也需要企业的核心决策层的领导力,以及创新力一起参与、制定一个大数据战略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16