京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人类进入数据化生存时代 大数据蕴含大价值_数据分析师考试
移动互联技术的普及,将每一个人都纳入到互联网之中,并随之产生海量的数据。那么,这些数据意味着什么,对人类有何价值?这就是当前计算机领域最热门的“大数据”研究。10月20日,中国计算机学会大数据专家委员会成立,在随后的“大数据”论坛上,与会嘉宾认为,人类已经进入了一个“数据化生存”的时代,“大数据”中蕴含着巨大的价值,并且已经在日常生活中发挥着潜移默化的作用。
据经济之声《天下财经》报道,“数据”是什么?数据就是资源,它像空气和水、石油和煤炭一样,就在你的周围自然而然的存在着,你每一次点击鼠标,每一次刷卡消费,其实就已经参与到了数据的生成,可以说,每一个人既是数字的生产者,也是数据的消费者。英国帝国理工学院教授、海量数据分析专家郭毅可就是这种理念的坚定支持者。
郭毅可:以前数据不是人类的资源,现在数据是一种自然资源,和水、油、气一样,没有数据不能生活,这就是数据。
其实,数据一直存在,但为什么现在人们会如此重视它?美国罗格斯-新泽西州立大学商学院教授熊晖认为,这是因为当前的技术手段为“大数据”的收集和分析提供了保障。
熊晖:现在这个大数据,我们第一次有了这么精细的观测手段,比如说,以前我们不可能知道每一个人的地理信息,现在我可以非常精细的知道你每时每刻在什么地方出现,然后就可以产生非常精细化的数据,可以用来描述人、社会和整个环境的行为,这些东西我们了解的更深了,可以帮助我们减少社会的复杂度。
今年3月,美国奥巴马政府宣布了“大数据研究和发展计划”,并设立了2亿美元的启动资金,希望增强收集海量数据、分析萃取信息的能力,认为这事关美国的国家安全和未来竞争力,鼓励大学培养下一代的“大数据科学家”。
如果抛开政府行为,“大数据”分析其实早已经在商业领域大显身手。金蝶国际软件集团首席科学家张良杰介绍,他们参与搭建的全国中小企业信息平台,上面汇集了4000万家企业,通过对这些企业海量数据的挖掘和分析,能够对经济运行状况做出准确的预警,有助于国家相关部门做出应对决策。此外,张良杰还举例说,在微观经济领域,“大数据”的作用也越发凸显。
张良杰:(美国一家公司)把天气预报的信息和数据,利用跟天气相关的大数据,在亚马逊的云平台上做处理,然后可以帮助农业的种植者能够很好地保障他们的收益。另外一个领域就是在企业的管理上,大数据可以帮助他们做决策。
在金融领域,“大数据分析”早已经成为一种流派,在美国华尔街,对冲基金、股票分析、高频数据交易等领域,数据分析师都是最抢手的人才;在中国,阿里巴巴旗下的金融业务,也开始利用电子商务数据来发放“信用贷款”,发展势头迅猛。
中科院虚拟经济与数据科学研究中心副主任石勇,是人民银行征信系统的建立者之一,他介绍,“征信系统”也是大数据的一种应用,是一个国家金融业务开展的基础。
石勇:在座的每一个人在银行做的任何事,包括在ATM上取钱,数据都在里面,现在各个商业银行都在用你们的信用评分(这个模型就是我们算出来的)来做贷款处理,这个重要性就不用讲了,美国引发次贷危机的三大指标之一就是信用评分,我们连信用评分都没有,怎么把经济工作搞好?
还有学者预测,谁拥有了数据以及对数据的发掘能力,谁就将占领下一个十年全球经济发展的制高点。但是目前,我国大数据应用刚刚起步,基于大数据的商业模式还在萌芽阶段,从需求来看,很多产业对大数据的使用还没有意识,而供给一方,由于技术和人才储备上的落后,也缺乏深厚的数据分析手段来支撑需求。
此外,在制度层面,中国工程院院士、中国计算机学会大数据专家委员会主任李国杰提醒,当前我国大量的基础数据掌握在政府部门手中,今后要想不输在起跑线上,政府部门就要有更开放的姿态分享手中的数据。
李国杰:政府部门的数据共享一直是个软肋,国外有数据公开法等法律的规定,政府采购的信息要共享等等,相对来说执行的比价好,而中国由于部门的色彩(比较重),这些大数据怎么共享利用这是要解决的大问题,也呼吁政府要尽快实现数据的共享,实现数据的开发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07