京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据预判能力或可指导散户“趋利避害”_数据分析师考试
如果你在牛市来临前三个月就能预知市场即将迎来的行情,是否还会为踏空而抱憾?如果你在股市下跌前可以了解到,熊市已经成为大家所关注的热点搜索内容,“躲过一劫”并不是没有可能。
日前,百度发布《新一代理财消费者大数据报告》,数据显示,网民的搜索大数据已经在金融领域显现出了“预判”的能力。很多重大事件,比如央行降息,股市上涨、股市下跌在此前发生的搜索数据中,已经可以捕捉到“降息”、“牛市”、“大跌”等成为热词。英大证券首席经济学家李大霄认为:随着互联网平台大数据技术的不断更新,这种预判能力或可指导散户们及时“趋利避害”。
大数据可能比股票分析师更清醒
在百度公布的这份报告中显示:2014年7月以来,中国股市进入牛市通道,2015年4月起进入“疯牛”节奏,5月突破4900点。在百度上对“股票开户”一词的相关搜索也在2014年7月几乎同时开始上涨,一直到2015年4月达到新的高峰,这背后是牛市行情催生出的人们对股票投资的热情和疯狂。
与此同时,股票入门基础知识、炒股入门知识、股票开户、股票入门、股票怎么玩等成为这一时期搜索量最大的关键词。而这批散户也成为4000点甚至4500点以后入市,在此轮股灾中损失惨重的“负面教材”。
在沪指冲上5000点后,李大霄一直是明确的“看空者”,他一直疾呼让股民远离市场风险。他表示:“当时散户和分析师都陷入狂热,8000点、10000点的大牛市声音不绝于耳。”但当时很多和市场一样疯狂的投资者,向他抛扔来“板砖”。而事实证明,有时候大数据比一些所谓分析师与投资者更清醒。
李大霄认为:估值过高是A股暴跌的内因也是最重要的原因,特别是创业板。但当时大家已经陷入不冷静的预期中,认为5000点是牛市的开始。一众散户听着各种分析前赴后继的在5000点前后入市,成为了新增的主力和接盘侠,也最终沦为此次股灾中的受害者。
对于报告中的数据事实,李大霄认为,互联网金融和股市的结合正在越来越紧密,这种紧密体现在股市的波动也会影响产品的波动,反过来,产品的增加或者是产品的止损也会影响到市场,关系紧密了以后,会互相影响互相制约。随着互联网平台大数据技术的不断更新,这种预判能力或可指导散户们及时“趋利避害”。
大数据可参与更多金融产品设计
李大霄认为,互联网平台和技术对于传统金融业来讲,正在发挥入口和渠道之外的更大作用。经过2013、2014年的快速发展,互联网金融特别是理财领域,互联网公司开始越来越深入地参与到金融产品的设计、营销中。
在他看来,金融企业有信誉度优势,互联网企业胜在客户体验,未来大数据等互联网技术甚至会深度参与进风险控制,营销以及客户的市场性管理,互联网平台应该更加重视产品线的丰富、给不同的投资人不同的选择,多元化的产品尽可能降低风险。
事实上,以BAT为代表的互联网巨头已经参与进了理财市场。以百度为例,大数据正在其与金融机构的合作中发挥重大作用,这其中,以大数据选股为特色的“百度股市通”炒股软件更是已经展现出互联网平台在金融领域可以参与的新深度。
李大霄认为,百度等互联网巨头的参与,使得互联网证券服务竞争全面加速。通过用户体验的升级和技术创新,百度等拥有大数据资源的互联网公司将会引领未来金融服务的走向,而交易费率的优惠也成为其极具竞争力的优势。
关于未来互联网金融的发展,李大霄认为大数据可能成为互联网与传统金融行业深度融合的催化剂。在他看来,大数据在用户需求挖掘、市场分析、风险分析、趋势洞察等方面都具备无可替代的作用,这一方面可以说是一片蓝海,还处于发展的初级阶段,如果哪个企业能够用好大数据这座金矿,就是无穷无尽的财富,很多机会也都在里面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13