京公网安备 11010802034615号
经营许可证编号:京B2-20210330
曙光用软件定义大数据时代的超融合_数据分析师考试
步入数据时代,数据量爆发性增长、数据类型日趋复杂不仅带来存储和管理方面的问题,更让传统存储系统的性能大打折扣。这要求存储厂商提供一种更新、更快、更适合用户现阶段需求的存储系统。数据服务供应商曙光公司祭出了“软件定义存储”的应对策略,不仅解决数据存储和复杂处理方面的难题,更通过将存储与大数据在三个层次上实现“统一架构为基础的超融合”,为进一步挖掘数据背后的价值打下基础。
层次一:硬件资源融合
软件定义,靠的是硬件上的可靠支撑。曙光公司存储产品事业部总经理惠润海介绍说,第一个层次上的融合硬件资源的融合——即存储与计算、网络资源的融合,硬件资源融合可大幅度降低运营的建设成本。
据统计,大数据技术年复合增长率超过惊人的40%。反映在在高端服务器市场,带来的是大数据应用的骤增、企业级客户对存储容量的需求从TB级升至PB级。在此格局之下,企业级客户首要的要求便是降低单位容量成本。为迎合这一技术发展的趋势,曙光推出S650-G20高密度存储服务器产品,回应用户对海量存储的需求。
5U88盘位的S650-G20存储服务器集高密度与高可靠性于一身,最大可以扩展到1PB的存储容量。这款可直接安装在标准机柜里的产品,采用了Haswell处理器架构和DDR4内存技术,使得它不仅可用于企业用户管理、存储大量非结构化数据、满足用户业务对存储容量的扩展需求,还将显著提升应用程序的性能。
1PB的存储容量大概相当于25万部高清的电影,因此S650-G20存储服务器完全可以胜任爱奇艺、土豆网这样的视频服务提供商的使用环境。当然,计算存储平衡的S650-G20可面向任何PB级需求的业务,如导航服务、云盘、视频监控、IPTV等。
此外,曙光的整机柜产品(66TB存储容量)也是曙光硬件资源融合产品的代表作,整机柜架构还可大幅度节省部署时间。
层次二:数据平台的融合
数据平台的融合是软件定义存储的核心,软件性能的提升有赖于数据平台的资源整合。惠润海提出,数据平台的融合应分为两个方面:数据存储平台自身的融合和数据存储平台和数据处理平台深层次的融合。这两个有点像绕口令的融合,其在数据平台中的价值体现中大有乾坤。
数据存储平台本身的融合,顾名思义,即为存储平台对各种类型数据的“大一统”。曙光分布式的云存储系统,可以融合多种存储接口,如文件接口、块接口、对象接口、大数据AP接口等,各种类型的数据都可以兼容。这种普适性对于复杂数据的处理而言非常重要。
ParaStor是曙光分布式存储的核心,发展至今已历经15年、升级至第5代产品。此分布式云存储系统面向云环境进行优化,定位于中大规模存储应用。目前服务超过1100家用户,累计销售可用容量260+PB。
数据存储平台和数据处理平台的深层次融合,面向的是日渐复杂的数据处理场景应用。复杂数据的处理要求存储平台和数据平台的多样化,一个统一融合的数据平台显得非常重要。
曙光经营12年之久、升级了4代的XData大数据一体机系列产品就是存储平台和处理平台深层次融合的典范。目前曙光XData大数据一体机产品高峰时段写入速度可达每秒钟百万条,查询速度仅以秒计,已成为客户海量网络流数据处理平台的中坚。一个生动的例子是,用户一年的数据可能达到几万亿条,要在这几万亿条里面找到一条指定的微信消息,几秒内甚至一秒钟就能找到。
层次三:应用系统的融合
应用系统的融合是“超融合”形态初具的关键。早在2014年10月,曙光公司就在业内率先推出将云计算、大数据、HPC三类应用融合到一起的“超融合”计算架构解决方案,致力于打破“数据孤岛”、挖掘数据价值。
如今,曙光从解决复杂数据存储与数据处理的角度,进一步丰富了“超融合”的概念。曙光“超融合”的布局今天可以表述为:以数据的统一存储和共享为基础,实现统一资源管理融合(计算、存储、网络)、实现统一数据管理融合(调度、共享、处理)、实现统一应用管理的融合(HPC、云计算、大数据)。这给用户带来的是极大地简化数据中心的建设和运营模式,节省大量成本。
预计到2020年,中国的数据量将占据全球的18%,在全球的位置越来越重要,这对中国的IT服务厂商而言意味着更大的机遇,软件定义的存储从中发挥出的作用也将会更大。当存储将不再只是一个存储系统、而是需要考量与存储相关的生态系统及其上下游产业链的呼应之时,定位于“IT综合服务提供商”的曙光真正迎来了时代的机遇。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06