京公网安备 11010802034615号
经营许可证编号:京B2-20210330
造船业如何玩转航运大数据_数据分析师考试
对大数据进行分析,挖掘大数据所蕴涵的价值,目前已成为许多行业的热点,并在行业评价、预测及企业运营方面发挥着重要作用。上海船舶运输科学研究所副总工程师、航运技术与安全国家重点实验室负责人陈昌运认为,船舶行业是个传统产业,与互联网和大数据技术的结合相对滞后,但船舶行业又是一个全球性且规模庞大的行业,联系着设计、制造和运输业等,与许多行业的大数据有着根深蒂固的关系,这其中就包括航运大数据。日前,他向造船业同仁介绍了航运大数据技术的有关研究情况,以及如何让航运大数据为造船业所用。
航运大数据收集与传输已有技术支撑
陈昌运介绍说,航运大数据包括船舶营运管理、船舶航行环境、船舶航行性能及营运能耗等数据内容,通常可以通过航运信息管理和船舶营运监测两种方式获取。
最常见的实船数据是船舶试航时测试到的数据,主要包括航速、航向、风速、风向、主机转速和扭矩等。但这类数据是在特定环境下获取的,采集的时间特定,数据量有限。因此,要获得最全面的数据,必须对营运船舶进行长期监测。
以往,营运船舶的航行数据主要是采用定时报送方式获取,通常每4小时或6小时由船上报送岸上,人工统计抄报的情况较为普遍。目前,随着船舶设备逐步智能化,卫星定位技术和通信技术日渐成熟,营运船舶很多物理数据的测量已成为可能,航运业船岸信息一体化也成为现实。陈昌运提出,要想实现航运数据传输量大且成本不太高,目前条件下可以采用两种简单实用的方法。一是进行数据岸端有线传输,即当船舶靠岸或靠泊码头时,将数据采用有线加密方式发送到指定的岸上网络信息平台,该岸上网络信息平台的所有者可以是该船舶所属公司,也可以是合作的科研机构。二是通过移动存储介质,在船舶每个航次返回特定港口时,由指定船员交到岸上指定机构。
鉴于海上风浪和船上各种设备运行环境的复杂性,监测得到的数据难免会有不完整或失真的情况。陈昌运表示,对于船舶监测数据要进行修正。可以根据监测数据的特性查找出失真数据,也可以根据数据的量级以及数据变化趋势进行判断,还可以根据其他相关信号量的值进行判断,例如,可以根据船舶运动来判断浪高监测数据是否失真等。一旦判断出失真数据,就要采用一定的数值方法对失真数据进行修补,通过后续监测的数据进行再验证,通过多次迭代与分析,逐步逼近正确的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05