京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据 及若干问题的讨论_数据分析师考试
1、大数据的发展趋势。Gartner2014年发布了技术成熟度曲线,把一项技术的发展分为:创新的萌芽期,膨胀期望的高峰期,幻灭的低谷期,光阴的爬升期,和生产率的稳定期五个阶段。大数据技术经历了2011年的萌芽期,2012、2013的膨胀期,现在慢慢进入幻灭的低谷期,实际上,2014年大数据炒作的热度开始降温,大数据还有5到10年才会达到稳定期,这样一个判断。
2、大数据、大数据技术的认识误区。数据量大是不是就可以成为大数据呢?这里面有一些认识上的误区。宁波的某个区,花2亿元,在全区装三千多个高清摄像头,每天产生5PB数据,是不是就是大数据?网上也流传过一些段子,比如说卖包子的开店,通过分析人流量进行选址,也叫大数据分析。我们在调研的过程中发现,有些企业把历史的交易数据、财务数据等进行整合、统计分析,然后得出一些曲线图,统计图等。传统数据的统计分析,我们称为具备数据思维。这很好,但还远远不够。一般认为大数据有4个特点,4V,即数据量大、数据类型繁多、高速处理、价值密度低。但我们认为,大数据,一定要有不同类型数据的融合,比如卫生局的数据和人口方面、地理数据等的融合,可以有新的发现,产生新的价值。这才是大数据真正奇妙的地方所在。宁波某区区长直言大数据就是烧钱,没有钱是玩不起的。显然这种认识也是片面的,如果大数据技术只是盲目上设备、大搞建设,却不知价值所在,当然会入不敷出。但大数据真正的价值除了服务民生,还要应用于产业,从而产生经济价值、带来经济效益。
3、数据的开放和共享问题。这里面既包括政府数据,也有企业数据。原来我以为,信息孤岛现象主要存在于政府部门,因为大家各自为政,同时受IBM白皮书的影响(将智慧城市分为:智慧交通、智慧医疗、智慧环保等7个智慧板块),国内各级政府一窝蜂的上项目,因为没有统一的规划和协调,上一个项目便成为一个信息孤岛。但调研过后我们发现,其实政府部门的数据做到内部的互联互通、融合、共享还是比较容易的,比如卫生局可以来协调所有医院的数据,因为有行政的手段可以干预和协调,比如宁波卫生局的大数据应用就是一个很好的案例。而企业的数据共享就比较难,比如腾讯很难把自己的数据共享给阿里,或者中移动。对于一些企业来说,包括中小企业,数据就是命脉,自己可能还没有好好利用,一般是不愿意公开给别人的。所以这个互联互通是很难的。因此在企业界,更容易出现信息孤岛现象。
我们的建议
针对以上两个问题,我们有两点建议:政府数据共享,目前证明,内部开放和共享是可能的,但对企业和公众开放还没有很好的案例。因为也牵扯到涉密的问题。国内某市长就曾直言,我把数据公开了,如果有人挖掘出国家机密,算谁的责任?数据开放没有依据和标准。所以我们的建议是,将数据进行分级,包括密级和轻重缓急,哪些数据可以马上开放、哪些可以逐步开放、哪些不能开放。当然,开放不等于公开,有些数据可以完全公开使用,有些经过申请和审批可以使用等等。
企业数据共享,我们认为,数据既然有价值,就可以作为资产,可以设立数据银行进行交易,企业可以对自己的数据进行存取,租用等。形成数据产业价值链,让企业的数据可以实现增值和共享,这样来方便大家把数据贡献出来,进行流动,融合以及产生更大的价值,当然具体商业模式可能还需要探索,还要解决数据的所有权问题等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05